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Discrete Diffusion Model: an Introduction

Task: Sample from a target distribution p0(x), where x ∈ X, X is a discrete set

Forward Process:
dpt
dt

= Qtpt, where (i) ∀x, Qt(x, x) = −
∑

y ̸=xQt(y, x); (ii) ∀x ̸= y,
Qt(x, y) ≥ 0
Backward Process ( ⃗∗t = ∗T−t):

d ⃗ps
ds

= Qs ⃗ps, where Qs(y, x) =


⃗ps(y)
⃗ps(x)

⃗Qs(x, y), ∀x ̸= y ∈ X

−
∑

y′ ̸=xQs(y′, x), ∀x = y ∈ X

Score Function: ŝθt (x) ≈ (st(x, y))y∈X := pt
pt(x)

parametrized by some neural network

(NN) and trained by the following loss:

min
θ

∫ T

0
ψtExt∼pt

[∑
y ̸=x

(
− log ŝ

θ
t (x, y)
st(x, y)

− 1 + ŝθt (x, y)
st(x, y)

)
st(x, y)Qt(x, y)

]
dt

Inference Schemes: Exact and Approximate

Exact Methods: Uniformization [3], First‐Hitting Sampler (FHS) [7], etc., which may
cause redundant number of function evaluations (NFEs)
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Inference Process
τ ‐Leapingµ̂sn

θ‐RK‐2(i) µ̂sn

(ii) (1− 1
2θ)µ̂sn

+ 1
2θµ̂
∗
ρn

θ‐Trapezoidal(i) µ̂sn

(ii) α1µ̂
∗
ρn
− α2µ̂sn

Figure 1. Left: An illustrative application of the uniformization algorithm to discrete diffusion
models for text generation. Perplexity convergence occurs well before the NFE experiences
unbounded growth. Right: Comparison between τ ‐leaping and the proposed second‐order
schemes (θ‐RK‐2 and θ‐Trapezoidal).

Approximate Methods: τ ‐Leaping scheme [1] (Euler‐Maruyama)

ŷsn+1 = ŷsn +
∑
ν∈D

νP (µ̂sn(ν)∆n) .

Above D is the set of all possible jumps from ŷsn, ∆n = sn+1 − sn is the step size, P(λ)
denotes the Poisson distribution with parameter λ, and

µρ(ν) := sρ(yρ−, yρ− + ν) ⃗Q
0
ρ(yρ−, yρ− + ν),

µ̂ρ(ν) := ŝθρ(ŷρ−, ŷρ− + ν) ⃗Q
0
ρ(ŷρ−, ŷρ− + ν)

are the true and estimated intensities for any time ρ, where − denotes the left limit,
A0 = A− diagA for any matrix A. [6] shows that the error bound of τ ‐leaping is
first‐order w.r.t the step size κ:

DKL(p0∥q̂T ) ≲ exp(−T )︸ ︷︷ ︸
truncation error

+ ϵ︸︷︷︸
score estimation error

+ κT︸︷︷︸
numerical error

Question: How to design faster approximate inference algorithms yielding better
performance and error bound with the same NFE?

Methodology: High-Order Inference Algorithm

Let the time discretization scheme (si)i∈[0:N ] and θ‐section points (ρn)n∈[0:N ] be
0 = s0 < s1 < · · · < sN = T − δ, ρn = (1− θ)sn + θsn+1

Take α1 = 1
2θ(1−θ) and α2 = (1−θ)2+θ2

2θ(1−θ) with α1−α2 = 1. Then during the n‐th step, we perform
the following updates (Figure 1, Right):

Motivation: Runge‐Kutta‐2 methods (0 < θ < 1) for ODE dxt = ft(xt)dt
x̂∗t+θ∆ = x̂t + ft(x̂t)θ∆, x̂t+∆ = x̂t +

[
(1− 1

2θ)ft(x̂t) + 1
2θft+θ∆(x̂∗t+θ∆)

]
∆.

θ‐RK‐2 Method: Interpolation between sn and ρn
ŷ∗ρn ← ŷsn +

∑
ν∈D

νP (µ̂sn(ν)θ∆n) ,

ŷsn+1 ← ŷsn +
∑
ν∈D

νP
(

1µ̂sn>0
[(

1− 1
2θ
)
µ̂sn + 1

2θµ̂
∗
ρn

]
+ (ν)∆n

)
.

θ‐Trapezoidal Method: Extrapolation beyond sn and ρn
ŷ∗ρn ← ŷsn +

∑
ν∈D

νP (µ̂sn(ν)θ∆n) ,

ŷsn+1 ← ŷ∗ρn +
∑
ν∈D

νP
((
α1µ̂

∗
ρn
− α2µ̂sn

)
+ (ν)(1− θ)∆n

)
.

Theoretical Analysis (Informal Bound)

θ‐RK‐2 Method: Suppose θ ∈ (0, 1
2] and (1− 1

2θ)µ̂⌊s⌋ + 1
2θµ̂
∗
ρs
≥ 0, then

DKL
(
p0∥q̂RK

T

)
≲ exp(−T ) + (ϵI + ϵII)T + κ2T

θ‐Trapezoidal Method: Suppose θ ∈ (0, 1] and α1µ̂
∗
ρs
− α2µ̂⌊s⌋ ≥ 0, then

DKL

(
p0∥q̂trap

T

)
≲ exp(−T ) + (ϵI + ϵII)T + κ2T

Assumptions

Exponential convergence of the forward process: DKL(pT∥p∞) ≲ exp(−T ).
Regularity of intensity: Both the true intensity µs and the estimated intensity µ̂s are in
C2 and bounded for any s ∈ [0, T − δ].
Score estimation error: The following error bounds hold for any grid point or θ‐section
point s ∈ ∪N−1

n=0 {sn, ρn}:

E

[∑
ν∈D

(
µs(ν)

(
log µs(ν)

µ̂s(ν)
− 1

)
+ µ̂s(ν)

)]
≤ ϵI,

E

[∑
ν∈D

|µs(ν)− µ̂s(ν)|

]
≤ ϵII.

.
Remarks

Proof Technique: Change of measure [6] between stochastic integral with respect to
Poisson random measures, error decomposition, and the usage of Dynkin’s Formula;
Second‐Order Numerical Error Guarantee: O(κ2T ) for both θ‐RK‐2 and θ‐Trapezoidal
methods vs. O(κT ) for τ ‐leaping method;
Range of θ: θ ∈ (0, 1/2] for RK‐2 method and θ ∈ (0, 1] for trapezoidal method, which is
caused by application of Jensen’s Inequality.

Experiments

Toy Model: synthetic discrete distribution over 15 states
Text Generation: RADD (GPT‐2 Level) [5] on OpenWebText
Image Generation: MaskGIT [2] on ImageNet‐256
Math Reasoning: LLaDA [4] (Instruct 8B) on GSM8K
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Figure 2. Toy Model, Text Generation and Math Reasoning, Left: Empirical KL divergence between the true
and generated distribution of the toy model (15 states) vs. NFE. Upper Right: Perplexity (on GPT‐2 large) of
generated text vs. NFE, Bottom Right: Response accuracy vs. NFE.
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Figure 3. Image Generation, Left: FID of images generated by different sampling algorithms versus
NFEs. Lower values are better. Right: Visualization of samples from ImageNet generated by
θ‐Trapezoidal.
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