Fast Solvers for Discrete Diffusion Models:
Theory and Applications of High-Order Algorithms
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Discrete Diffusion Model: an Introduction

= Task: Sample from a target distribution py(x), where € X, X'is a discrete set
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Inference Schemes: Exact and Approximate

= Exact Methods: Uniformization [3], First-Hitting Sampler (FHS) [7], etc., which may

cause redundant number of function evaluations (NFEs)
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Figure 1. Left: Anillustrative application of the uniformization algorithm to discrete diffusion
models for text generation. Perplexity convergence occurs well before the NFE experiences
unbounded growth. Right: Comparison between r-leaping and the proposed second-order
schemes (#-RK-2 and #-Trapezoidal).

= Approximate Methods: 7-Leaping scheme [1] (Euler-Maruyama)
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Above D is the set of all possible jumps from ys , A, = Sp41 —
denotes the Poisson distribution with parameter A, and

s, IS the step size, P(A)
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are the true and estimated intensities for any time p, where — denotes the left limit,

AY = A — diag A for any matrix A. [6] shows that the error bound of 7-leaping is
first-order w.r.t the step size k:
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Question: How to design faster approximate inference algorithms yielding better
performance and error bound with the same NFE?
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Methodology: High-Order Inference Algorithm

Let the time discretization scheme (s;);cjo.n and 6-section points (pp )nep.n) be

D=5 < 851 < -+

Take oy = 29<1 g and ap = (12;(?3)92 with ag — as = 1. Then during the n-th step, we perform

the following updates (Figure 1, Right):
= Motivation: Runge-Kutta-2 methods (0 < § < 1) for ODE dx; =
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= §-RK-2 Method: Interpolation between s,, and p,
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= §-Trapezoidal Method: Extrapolation beyond s,, and p,
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Theoretical Analysis (Informal Bound)

Experiments

= 9-RK-2 Method: Suppose 0 € (0,3] and (1 — 3)is) + 355 > 0, then

Dyt (p0||§¥K) < exp(=T)+ (e1+ )T + x°T
" 0-Trapezoidal Method: Suppose 6 € (0,1] and a5, — aofijs) > 0, then

Dy, (pOHZ]\gap) < exp(—=T) + (e + e)T + £°T

Assumptions

= Exponential convergence of the forward process: Dx1,(pr||pso) S exp(=T).

= Regularity of intensity: Both the true intensity u, and the estimated intensity 1, are in
C? and bounded for any s € [0, T — 4.

= Score estimation error: The following error bounds hold for any grid point or #-section
point s € Uf,LV:_Ol {Sn, pn}:
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Remarks

= Proof Technique: Change of measure [6] between stochastic integral with respect to
Poisson random measures, error decomposition, and the usage of Dynkin's Formula;

» Second-Order Numerical Error Guarantee: O(x*T') for both §-RK-2 and #-Trapezoidal
methods vs. O(kT) for T-leaping method;

= Range of 0: 6 € (0,1/2] for RK-2 method and 6 € (0, 1] for trapezoidal method, which is
caused by application of Jensen's Inequality.

The 39-th Annual Conference on Neural Information Processing Systems (NeurlPS 2025), San Diego, CA

= Toy Model: synthetic discrete distribution over 15 states

= Text Generation: RADD (GPT-2 Level) [5] on OpenWebTlext
* [mage Generation: MaskGIT [2] on ImageNet-256

= Math Reasoning: LLaDA [4] (Instruct 8B) on GSM8K
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Figure 2. Toy Model, Text Generation and Math Reasoning, Left: Empirical KL divergence between the true
and generated distribution of the toy model (15 states) vs. NFE. Upper Right: Perplexity (on GPT-2 large) of
generated text vs. NFE, Bottom Right: Response accuracy vs. NFE.
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Figure 3. Image Generation, Left: FID of images generated by different sampling algorithms versus
NFEs. Lower values are better. Right: Visualization of samples from ImageNet generated by
0-Trapezoidal.
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