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Estimating Normalizing Constant (Partition Function, Free Energy)

Task: given an unnormalized probability density π ∝ e−V , estimate its normalizing con-

stant (a.k.a. partition function) Z =
∫
Rd e−V (x)dx or free energy F = − log Z .

As a crucial problem in Bayesian statistics, statistical mechanics, and machine learning,

it is challenging in high dimensions or when π is multimodal.

Importance sampling: with a prior µ = 1
Zµ

e−U , we have the equality Zπ

Zµ
= 1

Zµ

∫
e−V dx =

Eµ
e−V

e−U . Hence the ratio can be estimated by sampling from µ. However, this estimator

suffers from high variance due to the mismatch between µ and π.

Annealing for Addressing Multimodality

Annealing: construct a sequence of intermediate distributions that bridge the target and

the prior distributions. This idea motivates several popular methods:

In statistics: path sampling, annealed importance sampling, sequential Monte Carlo,

etc.

In thermodynamics: thermodynamic integration, Jarzynski equality, etc.

Contributions: we aim to establish a rigorous non-asymptotic analysis of estimators

based on JE and AIS, while introducing minimal assumptions on the target distribution.

We also propose a new algorithm based on reverse diffusion samplers (RDS) to tackle a

potential shortcoming of AIS.

Wasserstein Distance, Metric Derivative, and Action

For probabilitymeasures µ, ν onRd, theWasserstein-2 distance is defined as W2(µ, ν) =
infγ∈Π(µ,ν)

(∫
‖x− y‖2γ(dx, dy)

)1
2 , where Π(µ, ν) is the set of all couplings of (µ, ν).

A vector field v = (vt : Rd → Rd)t∈[a,b] on Rd generates a curve of probability measures

ρ = (ρt)t∈[a,b] if the continuity equation ∂tρt +∇ · (ρtvt) = 0, t ∈ [a, b] holds.

The metric derivative of ρ at t ∈ [a, b] is defined as |ρ̇|t := limδ→0
W2(ρt+δ,ρt)

|δ| , which can

be interpreted as the “speed” of this curve. If |ρ̇|t exists and is finite for a.e. t ∈ [a, b], we
say that ρ is absolutely continuous (AC). Its action is defined as

∫ b

a |ρ̇|
2
t dt, which is a key

property characterizing the effectiveness of a curve in annealed sampling.

� Lemma (Relationship between Metric Derivative and Continuity Equation [1])

For an AC curve of probability measures (ρt)t∈[a,b], any vector field (vt)t∈[a,b] that generates

(ρt)t∈[a,b] satisfies |ρ̇|t ≤ ‖vt‖L2(ρt) for a.e. t ∈ [a, b]. Moreover, there exists a unique vector

field (v∗t )t∈[a,b] generating (ρt)t∈[a,b] that satisfies |ρ̇|t = ‖v∗t ‖L2(ρt) for a.e. t ∈ [a, b].

Problem Setting

Criterion: given an accuracy threshold ε, study the oracle complexity required to obtain

an estimator Ẑ of Z such that Pr
(∣∣∣ Ẑ

Z − 1
∣∣∣ ≤ ε

)
≥ 3

4 . Note that the probability can be

boosted to any 1− ζ using the median trick.

Annealing curve: we define a curve of probability measures
(

πθ = 1
Zθ

e−Vθ

)
θ∈[0,1]

from a

prior distribution to the target distribution. Z1 = Z is what we need to estimate.

Assump. 1: the potential [0, 1]× Rd 3 (θ, x) 7→ Vθ(x) ∈ R is jointly C1, and the curve

(πθ)θ∈[0,1] is AC with finite action A :=
∫ 1

0 |π̇|
2
θ dθ.

Assump. 2: V is β-smooth, and there exists x∗, with ‖x∗‖ =: R . 1√
β
s.t.

∇V (x∗) = 0. Let m :=
√

Eπ ‖ · ‖2 < +∞.

Analysis of the Jarzynski Equality (JE)

We introduce a reparameterized curve (π̃t = π t
T
)t∈[0,T ] for some large T to be deter-

mined later. Annealed Langevin diffusion (ALD):

dXt = ∇ log π̃t(Xt)dt +
√

2dBt, t ∈ [0, T ]; X0 ∼ π̃0.

I Jarzynski Equality (JE) [5]

LetP→ be the pathmeasure ofALD.Then the following relation between thework functional

W and free energy difference ∆F holds:

EP→ e−W = e−∆F , where W (X) := 1
T

∫ T

0
∂θVθ|θ= t

T
(Xt)dt, and ∆F := − log Z1

Z0
.

� Theorem (Convergence Guarantee of JE)

Ẑ := Z0e−W (X) with X ∼ P→ is an unbiased estimator of Z = Z0e−∆F . Under Assump.

1, it suffices to choose T = 32A
ε2 to obtain Pr

(∣∣∣ Ẑ
Z − 1

∣∣∣ ≤ ε
)
≥ 3

4 .

Analysis of the Annealed Importance Sampling (AIS)

I Annealed Importance Sampling (AIS) Equality [6]

Suppose we have probability distributions π` = 1
Z`

f`, ` ∈ [[0, M ]] and transition kernels

F`(x, ·), ` ∈ [[1, M ]], and assume that each π` is an invariant distribution of F`, ` ∈ [[1, M ]].
Define the path measure P→(x0:M) = π0(x0)

∏M
`=1 F`(x`−1, x`). Then we have

EP→ e−W = e−∆F , where W (x0:M) := log
M−1∏
`=0

f`(x`)
f`+1(x`)

and ∆F := − log ZM

Z0
.

For non-asymptotic analysis, we focus on the geometric interpolation:

πθ = 1
Zθ

fθ = 1
Zθ

exp
(
−V − λ(θ)

2 ‖ · ‖
2
)

, θ ∈ [0, 1] : λ(0) = 2β ↘ λ(1) = 0.

Introduce discrete time points 0 = θ0 < θ1 < ... < θM = 1, and define F` as running

LD targeting πθ`
for time T`. In practice, we approximate this by running one step of

annealed Langevin Monte Carlo (ALMC) using the exponential integrator discretiza-

tion scheme with step size T`.

� Theorem (Convergence Guarantee of AIS)

Under Assumps. 1 and 2, consider the annealing schedule λ(θ) = 2β(1 − θ)r for some

1 ≤ r . 1. We use Ar to denote the action of (πθ)θ∈[0,1]. Then the oracle com-

plexity for obtaining an estimate Ẑ that satisfies the criterion Pr
(∣∣∣ Ẑ

Z − 1
∣∣∣ ≤ ε

)
≥ 3

4 is

Õ

(
d

3
2

ε2 ∨ mβA
1
2
r

ε2 ∨ dβ2A2
r

ε4

)
.

Reverse Diffusion Sampler (RDS)

The choice of the curve (πθ)θ∈[0,1] is crucial for the complexity of JE & AIS. The geometric

interpolation is widely used due to the availability of the scores of πθ. However, for

general target distributions, the action of the curve can be large:

� Lemma (Exponential Lower Bound on the Action of Geometric Annealing)

Consider π = 1
2 N (0, 1) + 1

2 N (m, 1) on R for some large m & 1, whose potential is m2

2 -

smooth. Under the setting in AIS, define πθ(x) ∝ π(x)e−
λ(θ)

2 x2
, θ ∈ [0, 1], where λ(θ) =

m2(1− θ)r for some 1 ≤ r . 1. Then, the action of the curve (πθ)θ∈[0,1] is Ar & m4em2
40 .

Reverse diffusion samplers (RDS): a series of multimodal samplers inspired by diffusion

models. The OU process dYt = −Ytdt+
√

2dBt, t ∈ [0, T ]; Y0 ∼ π transforms any target

distribution π into φ := N (0, I) as T → ∞. Let Yt ∼ πt. The time-reversal (Y ←t :=
YT−t ∼ πT−t)t∈[0,T ] satisfies the SDE dY ←t = (Y ←t + 2∇ log πT−t(Y ←t ))dt +

√
2dWt, t ∈

[0, T ]; Y ←0 ∼ πT (≈ φ). We propose leveraging the curve along the OU process for

normalizing constant estimation. The following proposition supports this idea:

� Proposition (Polynomial Upper Bound of the Action of the OU curve)

Let πt be the law of Yt in the OU process initialized from Y0 ∼ π ∝ e−V , where V is β-smooth

and let m2 := Eπ ‖ · ‖2 <∞. Then,
∫∞

0 |π̇|
2
t dt ≤ dβ + m2.

� Theorem (a Framework for Normalizing Constant Estimation via RDS)

Assume a total time duration T , an early stopping time δ ≥ 0, and discrete time points 0 =
t0 < t1 < ... < tN = T − δ ≤ T . For t ∈ [0, T − δ), let t− denote tk if t ∈ [tk, tk+1). Let
s· ≈ ∇ log π· be a score estimator, and φ = N (0, I). Consider the following two SDEs on

[0, T−δ] representing the sampling trajectory and the time-reversed OU process, respectively:

Q† : dXt = (Xt + 2sT−t−(Xt−))dt +
√

2dBt, X0 ∼ φ;
Q : dXt = (Xt + 2∇ log πT−t(Xt))dt +

√
2dBt, X0 ∼ πT .

Let Ẑ := e−W (X), X ∼ Q† be the estimator of Z , where X 7→ W (X) is defined as

log φ(X0) + V (XT−δ) + (T − δ)d +
∫ T−δ

0

(
‖sT−t−(Xt−)‖2dt +

√
2
〈
sT−t−(Xt−), dBt

〉)
.

Then, to ensure Ẑ satisfies Pr
(∣∣∣ Ẑ

Z − 1
∣∣∣ ≤ ε

)
≥ 3

4 , it suffices that KL(Q‖Q†) . ε2,

TV(π, πδ) . ε. We can use results in [3, 4, 2, 7] to derive the total complexity.
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