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Estimating Normalizing Constant (Partition Function, Free Energy)

Task: given an unnormalized probability density T o eV, estimate its normalizing con-
stant (a.k.a. partition function) Z = fRd e V@) dz or free energy F = —log Z.

As a crucial problem in Bayesian statistics, statistical mechanics, and machine learning,
it is challenging in high dimensions or when 7 is multimodal.

U

Importance sampling: with a prior 1 = +e~Y, we have the equality Z= = - [e Vdz =

E, g:—Z Hence the ratio can be estimated by sampling from u. However, this estimator
suffers from high variance due to the mismatch between p and .

Annealing for Addressing Multimodality

Annealing: construct a sequence of intermediate distributions that bridge the target and
the prior distributions. This idea motivates several popular methods:

= |n statistics: path sampling, annealed importance sampling, sequential Monte Carlo,
etc.

* |n thermodynamics: thermodynamic integration, Jarzynski equality, etc.

Contributions: we aim to establish a rigorous non-asymptotic analysis of estimators
based on JE and AlS, while introducing minimal assumptions on the target distribution.
We also propose a new algorithm based on reverse diffusion samplers (RDS) to tackle a
potential shortcoming of AlS.

Wasserstein Distance, Metric Derivative, and Action

For probability measures i, v on R?, the Wasserstein-2 distance is defined as Wy (ju, v) =
1
inf. criun) (f |z = y|*v(dz, dy))?, where II(u, v) is the set of all couplings of (u, v).

Avector field v = (v, : R — R?),¢(,4 On R? generates a curve of probability measures
p = (pt)icfap I the continuity equation 0;p; + V - (pv:) = 0, ¢ € [a, b] holds.

The metric derivative of p at t € [a, b] is defined as |p|; := limg_g W, which can
be interpreted as the “speed” of this curve. If |p|; exists and is finite for a.e. t € [a, b], we
say that p is absolutely continuous (AC). Its action is defined as fcf’ |p|2dt, which is a key

property characterizing the effectiveness of a curve in annealed sampling.

B Lemma (Relationship between Metric Derivative and Continuity Equation [1])

For an AC curve of probability measures (p¢)tejap, any vector field (vi)sepa that generates
(Pt)te[ab satisfies |ply < ||ve||z2(,,) for a.e. t € [a,b]. Moreover, there exists a unique vector
field (vf)icpan SENErating (pi)iejap that satisfies |pl; = ||vf 2, for a.e. t € [a, b].

Problem Setting

Criterion: given an accuracy threshold e, study the oracle complexity required to obtain
an estimator Z of Z such that Pr (‘— — 1‘ < 5) > % Note that the probability can be
boosted to any 1 — ( using the median trick.

Annealing curve: we define a curve of probability measures ( = Z@ VG) o from a
f<l0,1

prior distribution to the target distribution. Z; = Z is what we need to estimate.

= Assump. 1: the potential [0,1] x R? 3 (8, z) — Vp(x) € Ris jointly C*, and the curve
(76)aejo.1) 1s AC with finite action A := [} |x[5 6.
= Assump. 2: V is -smooth, and there exists x,, with ||z.]| =@ R < == s.t.

S
VV(z,) =0. Letm = /E; || - ||? < +o0.

Analysis of the Jarzynski Equality (JE)

We introduce a reparameterized curve (m; = W%)te[O,T] for some large T to be deter-
)

mined later. Annealed Langevin diffusion (ALD):

dX, = Vieg 7 (Xy)dt + vV2d B, t € [0,T]; Xo ~ To.

» Jarzynski Equality (JE) [5]

Let P~ be the path measure of ALD. Then the following relation between the work functional
W and free energy difference AF holds:

VA
/ 0eVolo—r(Xp)dt, and AF := 10g71

0

Ep-e W =e2F  where W(X)

B Theorem (Convergence Guarantee of JE)

7 = Zoe W) with X ~ P~ is an unbiased estimator of Z
1, it suffices to choose T = 324 to obtain Pr < Z_ 1‘ < 5) >

Zoe 2F. Under Assump.

o |l
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Analysis of the Annealed Importance Sampling (AIS)

» Annealed Importance Sampling (AlS) Equality [6]

Suppose we have probability distributions m, = Zilfg, ¢ € [0, M] and transition kernels
Fy(z,-), L € [1, M], and assume that each m is an invariant distribution of Fy, £ € [1, M].

Define the path measure P~ (xg.a7) = mo(xo) [Tpey Fe(xe—1, z¢). Then we have
Zm

0)
=1 | | d AF := —log —
o8 f£+1 o R

Ep-e ™V =e2F where W (zg.)

For non-asymptotic analysis, we focus on the geometric interpolation:

— ot =zexp (V= 220 I7), 020,115 20 =25 \AW) -

Introduce discrete time points 0 = 6y < 61 < ... < Oy = 1, and define F; as running
LD targeting mg, for time Ty. In practice, we approximate this by running one step of
annealed Langevin Monte Carlo (ALMC) using the exponential integrator discretiza-
tion scheme with step size Tj.

B Theorem (Convergence Guarantee of AlS)

Under Assumps. 1 and 2, consider the annealing schedule A\(f) = 25(1 — 8)" for some
1 < r S 1 Weuse A, to denote the action of (mg)sco1)- Then the oracle com-

plexity for obtaining an estimate 7 that satisfies the criterion Pr % — 1’ < 5) > % is

~ 2 d22
O(E—gvmﬁ““ Y, 5““).

Reverse Diffusion Sampler (RDS)

The choice of the curve (mg)geo,1] is crucial for the complexity of JE & AlS. The geometric
interpolation is widely used due to the availability of the scores of my. However, for
general target distributions, the action of the curve can be large:

B Lemma (Exponential Lower Bound on the Action of Geometric Annealing)
Consider = = 3 N (0,1) + 3N (m, 1) on R for some large m 2 1, whose potential is ™
smooth. Under the setting in AlS, define mp(x) o w(x)e‘@xg, 0 € [0,1], where \(0) =
2
m?(1 — 6)" for some 1 < r < 1. Then, the action of the curve (mg)pejo 1] is A, 2 m'e.
Reverse diffusion samplers (RDS): a series of multimodal samplers inspired by diffusion
models. The OU process dY; = —Y;dt ++/2dB;, t € [0,T)]; Yy ~ « transforms any target
distribution 7 into ¢ := N (0,1) as T — oo. Let Y} ~ 7. The time-reversal (Y;© :=
Y7t ~ Tr_t)ieo,r) Satishies the SDE dY;™ = (V;™ + 2Vlogmr_+(Y,"))dt + V2dW,, t €

0,7]; Y& ~ 7pr(=~ ¢). We propose leveraging the curve along the OU process for
normalizing constant estimation. The following proposition supports this idea:

B Proposition (Polynomial Upper Bound of the Action of the OU curve)

Let 7, be the law of Y; in the OU process initialized from Yy ~ 7 oc eV
andlet m* :=E. || - ||* < oo. Then, [)*|7|7dt < dB + m?2.

, Wwhere V' is 8-smooth

B Theorem (a Framework for Normalizing Constant Estimation via RDS)

Assume a total time duration T, an early stopping time 6 > 0, and discrete time points 0 =
to<ti <..<tyn=T—-06<T. Fort € [0,T —0), lett_denotetyift € [tg,trs1). Let
s. = VlogT. be a score estimator, and ¢ = N (0,1). Consider the following two SDEs on
[0, T — 0] representing the sampling trajectory and the time-reversed OU process, respectively:

QT . dXt = (Xt + 25T—t, (Xti))dt + \/EdBt,
Q: dX, = (X; +2VilegTr_(X,))dt + V2dB;,

Xo ~ ¢;

Xo ~ 7.

Let Z := e W) X ~ Qf be the estimator of Z, where X — W (X) is defined as

T—0
log ¢(Xo) + V(Xr_s) + (T — 8)d + / (||ST_t (X)|2dE+ V2 (sr (X)), dBt>) .

Z _q

Then, to ensure Z satisfies Pr( ‘ < 5) > 3t suffices that KL(Q|QT) < &2
TV(7,7T5) < e. We can use results in [3, 4, 2, 7] to derive the total complexity.
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