Challenges for Non-log-concave Sampling

N

Aim: we study sampling from a probability distribution # o< e~ on R%, an important task in

computational statistics, Bayesian inference, statistical physics, etc.

The Langevin diffusion (LD) is the SDE d Xy = —VV (X3)dt+v/2dBy, t € [0, 00). Its Euler-Maruyama
discretization is known as the Langevin Monte Carlo (LMC) algorithm:

Xips1yn = Xgh — hVV(Xpp) + V2N (0,01), k=0,1,....

When 7 has good isoperimetry conditions (e.g., being log-concave or satisfying Poincaré or log-
Sobolev inequalities (PI/LSI)), LD converges exponentially fast in KL; furthermore, when V is
B-smooth, LMC also converges exponentially with a bias that vanishes when h — 0.

However, the effectiveness of LMC diminishes when dealing with target distributions that are
multimodal (such as mixtures of Gaussians): the sampler often becomes confined to a single mode.

Annealing to Address Multimodality

Annealing: construct a sequence of distributions mq, 71, ..., w7 that interpolates between an easily
samplable distribution g (e.g., N (0, I)) and the target distribution my; = 7. Start with samples
from gy and progressively sample from each m; until m,, is reached.

Our contribution: we propose a novel strategy to analyze the non-asymptotic complexity bounds of
annealed LMC algorithm, bypassing the need for assumptions such as log-concavity or isoperimetry.

Wasserstein Distance, Metric Derivative, and Action

For probability measures u, v on RY the Wasserstein-2 distance is defined as Waolu,v) =

1
inf er) ([ 2 = yll*v(dz, dy))?, where TI(, v) is the set of all couplings of (1, v).

A vector field v = (v : R — Rd)te[%b] on RY generates a curve of probability measures p =
<pt>t6[a,b] If the continuity equation Oipr + V - (prv) = 0, t € |a, b] holds.
Walpt5.0t)
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interpreted as the “speed” of this curve. If |p|+ exists and is finite for a.e. t € |a, b], we say that p is

absolutely continuous (AC). Its action is defined as fé) ]p|%dt, which is a key property characterizing
the effectiveness of a curve in annealed sampling.

The metric derivative of p at t € [a,b] is defined as |p|; = limg_yg , which can be

Lemma (Relationship between Metric Derivative and Continuity Equation [AGS08])

For an AC curve of probability measures (pt);ejq 3, any vector field (v)ye(, p) that generates (pt)e(q gy

satisfies |ply < ||Ut||L2(pt) for a.e. t € |a,b]. Moreover, there exists a unique vector field (U;fk)te[a,b]

generating (pt);efq p) that satisfies [p[; = vaHLg(pt) fora.e. t € |a,b|

Properties of the Action

Given an AC curve of probability measures <pt>te[0,1]’ and let A be its action. Then

=A> W22(p(), p1). The equality is attained when (pt>te[0,1] is a constant-speed Wasserstein geodesic,
i.e., let (X, X1) follow the optimal coupling of (pg, p1) and define pr = Law((1 — t) X + tX71).

= If p satisfies Crq1(pt)-LSI for all t, then A < fol Cra1(pt)?]|04V log ptHZLQ(pt)dt.
= If py satisfies Cpy(pg)-Pl for all t, then A < fol 2Cp1(pt)||0¢ log pt”2L2(pt)dt'

Problem Setting

We consider a curve of probability measures (w@)gé[m] from prior to target distribution.

* Assump. 1: each 7y has a finite second-order moment, and the curve (mg)ge(g 1] is AC with
finite action A = fOl |7'r|gd9.

= Assump. 2: V' is S-smooth, and there exists a global minimizer z, of V' such that ||z«|| < R.
Moreover, m has finite second-order moment.

Analysis of Annealed Langevin Dynamics (ALD)

An Example of Mixture of Gaussian

ALD: with reparametrized curve (7 := Wt/T)te[O,T] for some duration T', run the following SDE:

dX; = Vg 7p(Xe)dt + V2dBs, t € [0,T); Xo~ 79 = Xp ~ 0.

Theorem (Convergence Guarantee of ALD)

Under assump. 1, when choosing T' = 4—?2, it follows that KL(r|[pAEP) < €2

Sketch of Proof: Girsanov Theorem + Metric Derivative

Let Q be the path measure of ALD, and define P as the path measure of the reference SDE
dX; = (Vg 7 + v)(Xy)dt + v2d By, Xo ~ 7, t € [0,T).

The vector field v is designed such that Xy ~ m; for all t, which happens if.f. v generates

7. By Girsanov theorem, KL(x||[vAP) < KL(P||Q) = 1Ep i [lox(Xy)[12dt = + [ [|vg]2 jdt.

L?(my
Choosing v; that minimizes the L?(7;)-norm vyields %.

Analysis of Annealed Langevin Monte Carlo

Consider a d-dimensional mixture of Gaussian defined by m = Zi]\ilpij\/' (i, 87, where ||ly;|| = r
for all i. The potential V' = —logn is B-smooth, where B = B(4r%3 + 1). With an annealing
schedule defined by n(-) = 1 and A(f) = dB(1 — 0)7 for some 1 < ~v = O(1), we have A =

O (d(fr26 + 1) (7‘2 + %))

In the special case N = 2, y; = —ys, and r2 > 571, the complexity to obtain an 5—accur2ate sample
in TV distance is O(d332r4(r182 v d?)e=5); in contrast, as the LS| constant of mr is Q(e987)), existing
analysis of LMC can only provide an exponential complexity O(e@(ﬁr2)ds_2).

Comparison of Complexity Bounds

Theorem (Convergence Guarantee of ALMC)

Under Assumps. 1 and 2, consider the geometric interpolation mg o< exp (—77(9)‘/ — @II : ||2),

where the annealing schedules n(-) and \(-) satisfy ng = n(0) ,/ n(1) = 1 and Ag = A\(0) \, A(1) = 0.
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Then, ALMC generates a distribution pALMC satisfying KL(wHuALMC) < &2 within O (dﬁ A
to the oracle of V-and V'V in expectation.
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Figure 1. lllustration of ALMC. The ¢-th green arrow represents one step of LMC towards 7r,, while each red arrow
corresponds to the application of the same transition kernel, initialized at 77,_, on the reference trajectory P (in
purple). To evaluate KL(IP||Q), we only need to bound the aggregate KL divergence across each small interval (i.e.,
the sum of the blue “distances”).

Table 1. Comparison of oracle complexities in terms of d, €, and the LSI constant for sampling from 7 oc e V.
Algorithm nguergr;ﬁeggg Assgr;hpehrons Criterion Complexity
LMC [VW19] C-LS| Potential smooth &2, KL(-||x) O(C2%de=2)
PS [FYC23] C-LS| Potential smooth e, TV O(Cd 2 log e
Translated mixture of
STLMC [GLR18] / a well-conditioned e, TV O(poly(d, e~ 1))
distribution

Potential smooth —1
’ poly(e™")
nearly convex at oo e, TV Ofpoly(d)e )

Potential smooth &2, KL(7||-) exp(O(log” de—?))

Potential growing ~ )
at most quadratically = 1Y T V2 exp(O(d)O(log e™))
O(dA(d)*c™)

Potential smooth €2, KL(7||-)

RDMC [HDHT24]

RS-DMC [HZD'24]

/0OD-MC [HRT24]
ALMC (ours)

~ T~ | ]

Conclusion and Future Work

Our framework can also be used to analyze the statistical efficiency of normalizing constant (free
energy) estimation using Jarzynski equality and annealed importance sampling, see [GTC25].
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