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Challenges for Non-log-concave Sampling

Aim: we study sampling from a probability distribution π ∝ e−V on Rd, an important task in

computational statistics, Bayesian inference, statistical physics, etc.

The Langevin diffusion (LD) is the SDE dXt = −∇V (Xt)dt+
√

2dBt, t ∈ [0, ∞). Its Euler-Maruyama

discretization is known as the Langevin Monte Carlo (LMC) algorithm:

X(k+1)h = Xkh − h∇V (Xkh) +
√

2 N (0, hI) , k = 0, 1, ....

When π has good isoperimetry conditions (e.g., being log-concave or satisfying Poincaré or log-

Sobolev inequalities (PI/LSI)), LD converges exponentially fast in KL; furthermore, when V is

β-smooth, LMC also converges exponentially with a bias that vanishes when h → 0.
However, the effectiveness of LMC diminishes when dealing with target distributions that are

multimodal (such as mixtures of Gaussians): the sampler often becomes confined to a single mode.

Annealing to Address Multimodality

Annealing: construct a sequence of distributions π0, π1, ..., πM that interpolates between an easily

samplable distribution π0 (e.g., N (0, I)) and the target distribution πM = π. Start with samples

from π0 and progressively sample from each πi until πM is reached.

Our contribution: we propose a novel strategy to analyze the non-asymptotic complexity bounds of

annealed LMC algorithm, bypassing the need for assumptions such as log-concavity or isoperimetry.

Wasserstein Distance, Metric Derivative, and Action

For probability measures µ, ν on Rd, the Wasserstein-2 distance is defined as W2(µ, ν) =
infγ∈Π(µ,ν)

(∫
‖x − y‖2γ(dx, dy)

)1
2 , where Π(µ, ν) is the set of all couplings of (µ, ν).

A vector field v = (vt : Rd → Rd)t∈[a,b] on Rd generates a curve of probability measures ρ =
(ρt)t∈[a,b] if the continuity equation ∂tρt + ∇ · (ρtvt) = 0, t ∈ [a, b] holds.

The metric derivative of ρ at t ∈ [a, b] is defined as |ρ̇|t := limδ→0
W2(ρt+δ,ρt)

|δ| , which can be

interpreted as the “speed” of this curve. If |ρ̇|t exists and is finite for a.e. t ∈ [a, b], we say that ρ is

absolutely continuous (AC). Its action is defined as
∫ b

a |ρ̇|2tdt, which is a key property characterizing

the effectiveness of a curve in annealed sampling.

Lemma (Relationship between Metric Derivative and Continuity Equation [AGS08])

For an AC curve of probability measures (ρt)t∈[a,b], any vector field (vt)t∈[a,b] that generates (ρt)t∈[a,b]
satisfies |ρ̇|t ≤ ‖vt‖L2(ρt) for a.e. t ∈ [a, b]. Moreover, there exists a unique vector field (v∗

t )t∈[a,b]
generating (ρt)t∈[a,b] that satisfies |ρ̇|t = ‖v∗

t ‖L2(ρt) for a.e. t ∈ [a, b].

Properties of the Action

Given an AC curve of probability measures (ρt)t∈[0,1], and let A be its action. Then

A ≥ W 2
2 (ρ0, ρ1). The equality is attained when (ρt)t∈[0,1] is a constant-speed Wasserstein geodesic,

i.e., let (X0, X1) follow the optimal coupling of (ρ0, ρ1) and define ρt = Law((1 − t)X0 + tX1).
If ρt satisfies CLSI(ρt)-LSI for all t, then A ≤

∫ 1
0 CLSI(ρt)2‖∂t∇ log ρt‖2

L2(ρt)
dt.

If ρt satisfies CPI(ρt)-PI for all t, then A ≤
∫ 1

0 2CPI(ρt)‖∂t log ρt‖2
L2(ρt)

dt.

Problem Setting

We consider a curve of probability measures (πθ)θ∈[0,1] from prior to target distribution.

Assump. 1: each πθ has a finite second-order moment, and the curve (πθ)θ∈[0,1] is AC with

finite action A =
∫ 1

0 |π̇|2θdθ.

Assump. 2: V is β-smooth, and there exists a global minimizer x∗ of V such that ‖x∗‖ ≤ R.

Moreover, π has finite second-order moment.

Analysis of Annealed Langevin Dynamics (ALD)

ALD: with reparametrized curve (π̃t := πt/T )t∈[0,T ] for some duration T , run the following SDE:

dXt = ∇ log π̃t(Xt)dt +
√

2dBt, t ∈ [0, T ]; X0 ∼ π̃0 =⇒ XT ∼ νALD.

Theorem (Convergence Guarantee of ALD)

Under assump. 1, when choosing T = A
4ε2 , it follows that KL(π‖νALD) ≤ ε2.

Sketch of Proof: Girsanov Theorem + Metric Derivative

Let Q be the path measure of ALD, and define P as the path measure of the reference SDE

dXt = (∇ log π̃t + vt)(Xt)dt +
√

2dBt, X0 ∼ π̃0, t ∈ [0, T ].
The vector field v is designed such that Xt ∼ π̃t for all t, which happens if.f. v generates

π̃. By Girsanov theorem, KL(π‖νALD) ≤ KL(P‖Q) = 1
4EP

∫ T
0 ‖vt(Xt)‖2dt = 1

4
∫ T

0 ‖vt‖2
L2(π̃t)

dt.

Choosing vt that minimizes the L2(π̃t)-norm yields A
4T .

Analysis of Annealed Langevin Monte Carlo

Theorem (Convergence Guarantee of ALMC)

Under Assumps. 1 and 2, consider the geometric interpolation πθ ∝ exp
(

−η(θ)V − λ(θ)
2 ‖ · ‖2

)
,

where the annealing schedules η(·) and λ(·) satisfy η0 = η(0) ↗ η(1) = 1 and λ0 = λ(0) ↘ λ(1) = 0.
Then, ALMC generates a distribution νALMC satisfying KL(π‖νALMC) ≤ ε2 within Õ

(
dβ2A2

ε6

)
calls

to the oracle of V and ∇V in expectation.

Figure 1. Illustration of ALMC. The `-th green arrow represents one step of LMC towards π̃T`
, while each red arrow

corresponds to the application of the same transition kernel, initialized at π̃T`−1 on the reference trajectory P (in

purple). To evaluate KL(P‖Q), we only need to bound the aggregate KL divergence across each small interval (i.e.,

the sum of the blue “distances”).

An Example of Mixture of Gaussian

Consider a d-dimensional mixture of Gaussian defined by π =
∑N

i=1 pi N
(
yi, β−1I

)
, where ‖yi‖ = r

for all i. The potential V = − log π is B-smooth, where B = β(4r2β + 1). With an annealing

schedule defined by η(·) ≡ 1 and λ(θ) = dB(1 − θ)γ for some 1 ≤ γ = O(1), we have A =
O
(

d(r2β + 1)
(

r2 + d
β

))
.

In the special case N = 2, y1 = −y2, and r2 � β−1, the complexity to obtain an ε-accurate sample

in TV distance is Õ(d3β2r4(r4β2 ∨d2)ε−6); in contrast, as the LSI constant of π is Ω(eΘ(βr2)), existing
analysis of LMC can only provide an exponential complexity Õ(eΘ(βr2)dε−2).

Comparison of Complexity Bounds

Table 1. Comparison of oracle complexities in terms of d, ε, and the LSI constant for sampling from π ∝ e−V .

Algorithm
Isoperimetric

Assumptions

Other

Assumptions
Criterion Complexity

LMC [VW19] C-LSI Potential smooth ε2, KL(·‖π) Õ(C2dε−2)
PS [FYC23] C-LSI Potential smooth ε, TV Õ(Cd1/2 log ε−1)

STLMC [GLR18] /

Translated mixture of

a well-conditioned

distribution

ε, TV O(poly(d, ε−1))

RDMC [HDH+24] /
Potential smooth,

nearly convex at ∞ ε, TV O(poly(d)epoly(ε−1))

RS-DMC [HZD+24] / Potential smooth ε2, KL(π‖·) exp(O(log3 dε−2))

ZOD-MC [HRT24] /
Potential growing

at most quadratically
ε, TV + W2 exp(Õ(d)O(log ε−1))

ALMC (ours) / Potential smooth ε2, KL(π‖·) Õ(dA(d)2ε−6)

Conclusion and FutureWork

Our framework can also be used to analyze the statistical efficiency of normalizing constant (free

energy) estimation using Jarzynski equality and annealed importance sampling, see [GTC25].
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