

Georgia Institute of Technology

Challenges for Non-log-concave Sampling

Aim: we study sampling from a probability distribution $\pi \propto e^{-V}$ on \mathbb{R}^d , an important task in computational statistics, Bayesian inference, statistical physics, etc.

The Langevin diffusion (LD) is the SDE $dX_t = -\nabla V(X_t)dt + \sqrt{2}dB_t, t \in [0, \infty)$. Its Euler-Maruyama discretization is known as the Langevin Monte Carlo (LMC) algorithm:

 $X_{(k+1)h} = X_{kh} - h\nabla V(X_{kh}) + \sqrt{2}\mathcal{N}(0, hI), \ k = 0, 1, \dots$

When π has good isoperimetry conditions (e.g., being log-concave or satisfying Poincaré or log-Sobolev inequalities (PI/LSI)), LD converges exponentially fast in KL; furthermore, when V is β -smooth, LMC also converges exponentially with a bias that vanishes when $h \rightarrow 0$.

However, the effectiveness of LMC diminishes when dealing with target distributions that are **multimodal** (such as mixtures of Gaussians): the sampler often becomes confined to a single mode.

Annealing to Address Multimodality

Annealing: construct a sequence of distributions $\pi_0, \pi_1, ..., \pi_M$ that interpolates between an easily samplable distribution π_0 (e.g., $\mathcal{N}(0, I)$) and the target distribution $\pi_M = \pi$. Start with samples from π_0 and progressively sample from each π_i until π_M is reached.

Our contribution: we propose a novel strategy to analyze the non-asymptotic complexity bounds of annealed LMC algorithm, by passing the need for assumptions such as log-concavity or isoperimetry.

Wasserstein Distance, Metric Derivative, and Action

For probability measures μ, ν on \mathbb{R}^d , the Wasserstein-2 distance is defined as $W_2(\mu, \nu) = 0$ $\inf_{\gamma \in \Pi(\mu,\nu)} \left(\int \|x-y\|^2 \gamma(\mathrm{d}x,\mathrm{d}y) \right)^{\frac{1}{2}}$, where $\Pi(\mu,\nu)$ is the set of all couplings of (μ,ν) . A vector field $v = (v_t : \mathbb{R}^d \to \mathbb{R}^d)_{t \in [a,b]}$ on \mathbb{R}^d generates a curve of probability measures $\rho =$ $(\rho_t)_{t\in[a,b]}$ if the **continuity equation** $\partial_t \rho_t + \nabla \cdot (\rho_t v_t) = 0, t \in [a,b]$ holds.

The metric derivative of ρ at $t \in [a, b]$ is defined as $|\dot{\rho}|_t := \lim_{\delta \to 0} \frac{W_2(\rho_{t+\delta}, \rho_t)}{|\delta|}$, which can be interpreted as the "speed" of this curve. If $|\dot{\rho}|_t$ exists and is finite for a.e. $t \in [a, b]$, we say that ρ is **absolutely continuous (AC)**. Its **action** is defined as $\int_a^b |\dot{\rho}|_t^2 dt$, which is a key property characterizing the effectiveness of a curve in annealed sampling.

Lemma (Relationship between Metric Derivative and Continuity Equation [AGS08])

For an AC curve of probability measures $(\rho_t)_{t \in [a,b]}$, any vector field $(v_t)_{t \in [a,b]}$ that generates $(\rho_t)_{t \in [a,b]}$ satisfies $|\dot{\rho}|_t \leq ||v_t||_{L^2(\rho_t)}$ for a.e. $t \in [a, b]$. Moreover, there exists a unique vector field $(v_t^*)_{t \in [a, b]}$ generating $(\rho_t)_{t \in [a,b]}$ that satisfies $|\dot{\rho}|_t = ||v_t^*||_{L^2(\rho_t)}$ for a.e. $t \in [a,b]$.

Properties of the Action

Given an AC curve of probability measures $(
ho_t)_{t\in[0,1]}$, and let $\mathcal A$ be its action. Then

- $\mathcal{A} \geq W_2^2(\rho_0, \rho_1)$. The equality is attained when $(\rho_t)_{t \in [0,1]}$ is a constant-speed Wasserstein geodesic, i.e., let (X_0, X_1) follow the optimal coupling of (ρ_0, ρ_1) and define $\rho_t = \text{Law}((1-t)X_0 + tX_1)$.
- If ρ_t satisfies $C_{\text{LSI}}(\rho_t)$ -LSI for all t, then $\mathcal{A} \leq \int_0^1 C_{\text{LSI}}(\rho_t)^2 \|\partial_t \nabla \log \rho_t\|_{L^2(\rho_t)}^2 \mathrm{d}t$.
- If ρ_t satisfies $C_{\text{PI}}(\rho_t)$ -PI for all t, then $\mathcal{A} \leq \int_0^1 2C_{\text{PI}}(\rho_t) \|\partial_t \log \rho_t\|_{L^2(\rho_t)}^2 \mathrm{d}t$.

Provable Benefit of Annealed Langevin Monte Carlo for Non-log-concave Sampling

Wei Guo Molei Tao Yongxin Chen

Problem Setting

We consider a curve of probability measures $(\pi_{\theta})_{\theta \in [0,1]}$ from prior to target distribution.

- Assump. 1: each π_{θ} has a finite second-order moment, and the curve $(\pi_{\theta})_{\theta \in [0,1]}$ is AC with finite action $\mathcal{A} = \int_0^1 |\dot{\pi}|_{\theta}^2 \mathrm{d}\theta$.
- Assump. 2: V is β -smooth, and there exists a global minimizer x_* of V such that $||x_*|| \leq R$. Moreover, π has finite second-order moment.

Analysis of Annealed Langevin Dynamics (ALD)

ALD: with reparametrized curve $(\tilde{\pi}_t := \pi_{t/T})_{t \in [0,T]}$ for some duration T, run the following SDE: $dX_t = \nabla \log \widetilde{\pi}_t(X_t) dt + \sqrt{2} dB_t, \ t \in [0, T]; \ X_0 \sim \widetilde{\pi}_0 \implies X_T \sim \nu^{\text{ALD}}.$

Theorem (Convergence Guarantee of ALD)

Under assump. 1, when choosing $T = \frac{A}{Ac^2}$, it follows that KL

Sketch of Proof: Girsanov Theorem + Metric Derivative

Let \mathbb{Q} be the path measure of ALD, and define \mathbb{P} as the path measure of the reference SDE $dX_t = (\nabla \log \widetilde{\pi}_t + v_t)(X_t)dt + \sqrt{2}dB_t, \ X_0 \sim \widetilde{\pi}_0, \ t \in [0, T].$

The vector field v is designed such that $X_t \sim \tilde{\pi}_t$ for all t, which happens if f. v generates $\widetilde{\pi}$. By Girsanov theorem, $\operatorname{KL}(\pi \| \nu^{\operatorname{ALD}}) \leq \operatorname{KL}(\mathbb{P} \| \mathbb{Q}) = \frac{1}{4} \mathbb{E}_{\mathbb{P}} \int_0^T \| v_t(X_t) \|^2 \mathrm{d}t = \frac{1}{4} \int_0^T \| v_t \|_{L^2(\widetilde{\pi}_t)}^2 \mathrm{d}t.$ Choosing v_t that minimizes the $L^2(\widetilde{\pi}_t)$ -norm yields $\frac{\mathcal{A}}{4T}$.

Analysis of Annealed Langevin Monte Carlo

Theorem (Convergence Guarantee of ALMC)

Under Assumps. 1 and 2, consider the geometric interpolation $\pi_{\theta} \propto \exp\left(-\eta(\theta)V - \frac{\lambda(\theta)}{2} \|\cdot\|^2\right)$, where the annealing schedules $\eta(\cdot)$ and $\lambda(\cdot)$ satisfy $\eta_0 = \eta(0) \nearrow \eta(1) = 1$ and $\lambda_0 = \lambda(0) \searrow \lambda(1) = 0$. Then, ALMC generates a distribution ν^{ALMC} satisfying $\text{KL}(\pi \| \nu^{\text{ALMC}}) \leq \varepsilon^2$ within $\widetilde{O}\left(\frac{d\beta^2 \mathcal{A}^2}{\varepsilon^6}\right)$ calls to the oracle of V and ∇V in expectation.

Figure 1. Illustration of ALMC. The ℓ -th green arrow represents one step of LMC towards $\tilde{\pi}_{T_{\ell}}$, while each red arrow corresponds to the application of the same transition kernel, initialized at $\tilde{\pi}_{T_{\ell-1}}$ on the reference trajectory \mathbb{P} (in purple). To evaluate $KL(\mathbb{P}||\mathbb{Q})$, we only need to bound the aggregate KL divergence across each small interval (i.e., the sum of the blue "distances").

$$\mathcal{L}(\pi \| \nu^{\text{ALD}}) \le \varepsilon^2.$$

Q: annealed LMC

 \mathbb{P} : reference

Consider a d-dimensional mixture of Gaussian defined by $\pi = \sum_{i=1}^{N} p_i \mathcal{N}(y_i, \beta^{-1}I)$, where $\|y_i\| = r$ for all i. The potential $V = -\log \pi$ is B-smooth, where $B = \beta(4r^2\beta + 1)$. With an annealing schedule defined by $\eta(\cdot) \equiv 1$ and $\lambda(\theta) = dB(1-\theta)^{\gamma}$ for some $1 \leq \gamma = O(1)$, we have $\mathcal{A} = 0$ $O\left(d(r^2\beta+1)\left(r^2+\frac{d}{\beta}\right)\right)$

In the special case N = 2, $y_1 = -y_2$, and $r^2 \gg \beta^{-1}$, the complexity to obtain an ε -accurate sample in TV distance is $\widetilde{O}(d^3\beta^2r^4(r^4\beta^2\vee d^2)\varepsilon^{-6})$; in contrast, as the LSI constant of π is $\Omega(e^{\Theta(\beta r^2)})$, existing analysis of LMC can only provide an exponential complexity $\widetilde{O}(e^{\Theta(\beta r^2)}d\varepsilon^{-2})$.

Comparison of Complexity Bounds

Table 1. Comparison of oracle complexities in terms of d, ε , and the LSI constant for sampling from $\pi \propto e^{-V}$.

Algorithm	Isoperimetric Assumptions	Other	Criterion	Complexity
	Assumptions	Assumptions	0	\sim 2 2
LMC [VW19]	$C ext{-LSI}$	Potential smooth	ε^2 , KL $(\cdot \ \pi)$	$O(C^2 d\varepsilon^{-2})$
PS [FYC23]	$C ext{-LSI}$	Potential smooth	ε , TV	$\widetilde{O}(Cd^{1/2}\log \varepsilon^{-1})$
		Translated mixture of		
STLMC [GLR18]	/	a well-conditioned	ε , TV	$O(\operatorname{poly}(d, \varepsilon^{-1}))$
		distribution		
RDMC [HDH ⁺ 24]	/	Potential smooth,	ε , TV	$O(\text{poly}(d)e^{\text{poly}(\varepsilon^{-1})})$
		nearly convex at ∞		
RS-DMC [HZD+24]	/	Potential smooth	ε^2 , KL $(\pi \ \cdot)$	$\exp(O(\log^3 d\varepsilon^{-2}))$
ZOD-MC [HRT24]	/	Potential growing	ε , TV + W ₂	$\exp(\widetilde{O}(d)O(\log \varepsilon^{-1}))$
		at most quadratically		
ALMC (ours)	/	Potential smooth	ε^2 , KL $(\pi \ \cdot)$	$\widetilde{O}(d\mathcal{A}(d)^2\varepsilon^{-6})$

Conclusion and Future Work

Our framework can also be used to analyze the statistical efficiency of normalizing constant (free energy) estimation using Jarzynski equality and annealed importance sampling, see [GTC25].

[AGS08]	Luigi Ambrosio, Nicola Gigli, and Giusepp Lectures in Mathematics. ETH Zürich. Birk
[FYC23]	Jiaojiao Fan, Bo Yuan, and Yongxin Chen. In and Lorenzo Rosasco, editors, <i>Proceedings</i> <i>Learning Research</i> , pages 1473–1521. PML
[GLR18]	Rong Ge, Holden Lee, and Andrej Risteski. chain decomposition. <i>arXiv preprint arXiv:1</i>
[GTC25]	Wei Guo, Molei Tao, and Yongxin Chen. annealed importance sampling and beyond
[HDH+24]	Xunpeng Huang, Hanze Dong, Yifan Hao, Conference on Learning Representations, 202
[HRT24]	Ye He, Kevin Rojas, and Molei Tao. Zeroth-o denoising diffusion. In <i>The Thirty-eighth An</i>
[HZD+24]	Xunpeng Huang, Difan Zou, Hanze Dong, Monte Carlo. In Shipra Agrawal and Aaron of Proceedings of Machine Learning Research
[VW19]	Santosh S. Vempala and Andre Wibisono. <i>R</i> Curran Associates, Inc., 2019.

An Example of Mixture of Gaussian

References

- be Savaré. Gradient Flows: In Metric Spaces and in the Space of Probability Measures. häuser Basel, 2 edition, 2008.
- mproved dimension dependence of a proximal algorithm for sampling. In Gergely Neu s of Thirty Sixth Conference on Learning Theory, volume 195 of Proceedings of Machine LR, 12–15 Jul 2023.
- Simulated tempering Langevin Monte Carlo II: An improved proof using soft Markov 812.00793, 2018.
- Complexity analysis of normalizing constant estimation: from jarzynski equality to d. arXiv preprint arXiv:2502.04575, 2025.
- Yian Ma, and Tong Zhang. Reverse diffusion Monte Carlo. In The Twelfth International
- order sampling methods for non-log-concave distributions: Alleviating metastability by nual Conference on Neural Information Processing Systems, 2024.
- Yi-An Ma, and Tong Zhang. Faster sampling without isoperimetry via diffusion-based Roth, editors, Proceedings of Thirty Seventh Conference on Learning Theory, volume 247 h, pages 2438–2493. PMLR, 30 Jun–03 Jul 2024.
- Rapid Convergence of the Unadjusted Langevin Algorithm: Isoperimetry Suffices, volume 32.