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摘要 

 

基于得分的生成模型利用神经网络来近似数据分布的得分函数，并使用随机微分方程

或常微分方程从学得的模型中采样。此类模型在诸如文本到图像生成和音频合成等任务中

达到了一流的性能。为阐明和揭示其在实践中的成功，我们在本文中研究其逼近性质，主

要关注两种算法：非精确 Langevin Monte Carlo 和扩散模型。我们在不同的得分函数估计

精度假设（即在 L∞、L2 和矩生成函数意义下的精度）下建立了非精确 Langevin Monte 

Carlo 在各种度量（如全变差距离、Wasserstein-2 距离和 Rényi 散度）下的收敛性保证。

我们还对分析扩散模型逼近性质的不同方法进行了全面的综述，包括变分方法、Fokker-

Planck 方法、Girsanov 方法、L∞ → L2 方法、恢复—退化方法和 KL 散度分解方法。我

们的分析表明，在较弱的目标分布和离散格式假设下，只要得分函数估计足够精确，基于

得分的生成模型可以任意地近似目标分布。这部分阐明了基于得分的生成模型的理论基础。 

 

关键词：基于得分的生成模型、非精确 Langevin Monte Carlo、扩散模型、逼近、收敛。 
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Abstract

Score-based generative models leverage a neural network to approximate the

score function of the data distribution and employ stochastic or ordinary differen-

tial equations to sample from the learned model, which have achieved state-of-the-

art performance in tasks such as text-to-image generation and audio synthesis. To

elucidate and demystify their empirical success, we investigate their approximation

properties in this paper, and focus on two main algorithms: the inexact Langevin

Monte Carlo (LMC), and the diffusion models. We establish convergence guarantees

of inexact LMC in various metrics (e.g., total-variational distance, Wasserstein-2

distance, and Rényi divergence) under different assumptions of accuracy in score

estimation (namely, accuracy in the sense of L∞, L2, and moment generating func-

tion). We also provide a comprehensive review of different approaches to analyze the

approximation properties of diffusion models, including the variational approach,

the Fokker-Planck approach, the Girsanov approach, the L∞ → L2 approach, the

restoration-degradation approach, and the KL divergence decomposition approach.

Our analysis reveals that under mild assumptions of the target distribution and the

discretization scheme, score-based generative models can arbitrarily approximate

the target distribution provided that the score estimate is sufficiently precise, which

partially sheds light on the theoretical foundations of score-based generative models.

Keywords: score-based generative models, inexact Langevin Monte Carlo, diffu-

sion model, approximation, convergence.
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1 Introduction

Generative modeling aims to learn the complex distribution of real-world data in high

dimensional spaces using models that are tractable to train and sample from. Two preva-

lent approaches are: (i) likelihood-based models, such as normalizing flow [DKB14; RM15;

DSDB17; KD18] and variational autoencoder (VAE) [KW14; BGS16; VK20], which ex-

plicitly define and optimize a likelihood function to quantify the model’s fit to the data,

but they often encounter the challenge of computing the intractable normalizing constant

and have limited expressiveness due to the explicit likelihood formulation; (ii) implicit

models, such as generative adversarial network (GAN) [Goo+14; NCT16; ACB17], which

use a generator to transform a simple distribution (e.g., standard Gaussian) to the data

distribution and a discriminator to distinguish between the real and generated data, using

an adversarial training scheme, but they often suffer from mode collapse and vanishing

gradient issues.

Score-based generative models [SE19; SE20; Son+21b] adopt a different paradigm

to model the target distribution and sample from it. They use a neural network to

represent the score (the gradient of the log-density) of the probability distribution, which

can be efficiently trained via score-matching and its variants. To generate samples from

the learned score network, they typically employ stochastic differential equations (SDEs)

such as Langevin dynamics. Score-based generative models have demonstrated state-of-

the-art performance in various domains and tasks, such as image synthesis [Son+21b;

DN21; Men+22], video [Ho+22], audio [Kon+21], text-to-image generation [Ram+22],

molecule generation [Xu+22a], and medical image analysis [CY22]. For a comprehensive

overview, see [Yan+22].

Despite their empirical success, score-based generative models lack a rigorous theo-

retical foundation. A key question that motivates both practical and theoretical research

is to elucidate the mathematical principles that underlie their performance. In this pa-

per, we will focus on one specific theoretical aspect: the approximation guarantee, i.e.,

whether near-accurate score estimations imply that score-based generative models con-

verge to the true data distribution. As we will demonstrate in Section 2, the sampling

quality of score-based generative models is affected by multiple sources of error. A careful

analysis of these sources of error is essential to understand the approximation guaran-

tee. We begin by investigating sampling from a target probability density using inexact

Langevin Monte Carlo (LMC), which is a feasible way of simulating the SDE of Langevin

dynamics with an approximate score parameterized by a neural network. The inexact

LMC underpins other sampling methods in score-based generative modeling, and thus it

constitutes a fundamental step towards understanding these models. Next, we examine

diffusion models, which exhibit remarkable ability to capture real-world data distribu-

tions and form the backbone of the state-of-the-art large-scale generative models such as

DALL·E 2 [Ram+22]. The main question we explore in this paper is:

3
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How can we measure the discrepancy between the target distribution and

the output distribution, considering all the sources of error?

Roadmap of the Paper. See Appendix A for the notations and definitions of con-

cepts used in the paper. Section 2 provides background knowledge on score-based gener-

ative learning, including inexact LMC, score-matching, and diffusion models. Section 3

analyzes inexact LMC and discusses and compares the results, while Section 4 deals with

diffusion models. Section 5 concludes the paper and suggests some future directions. The

proofs of the main theorems are in Appendix B and the supplementary lemmas are in

Appendix C. We provide detailed proofs for all the new results in this paper. For the

results that have been proved in previous works, we only sketch the proofs to highlight

their main ideas and insights, and refer interested readers to the original papers for full

proofs. However, we will correct some parts of the proofs if there are significant errors in

the original papers (e.g., Theorems 4 and 6).

Contributions. Theorem 2 presents a new non-asymptotic bound in Wasserstein-2

distance for inexact LMC with L∞- and L2-accurate scores. Theorem 3 provides the first

convergence guarantee for inexact LMC with MGF-accurate scores in Rényi divergence.

Prior Works. Though there are extensive prior works studying the convergence guar-

antee of LMC, e.g., [Ebe11; DT12; Ebe16; VW19; DMM19; EHZ22; Che+22; LZT22],

there has only been few works focusing on the convergence of inexact LMC, e.g., [BMR20;

LLT22; WY22]. In practice, when the score function is parameterized by a neural net-

work which is trained by score-matching and its variants, the estimated score function is

only accurate in L2 (defined in Section 3), which poses a great challenge for the analysis

and deserves careful treatment. For the diffusion models, [HLC21] and later [Son+21a]

adopted a variational perspective and established a weak relationship between the er-

ror of score network and the log-likelihood of output distribution through a VAE-like

variational lower bound. [De +21; De 22] are two of the early works focusing on ap-

proximation capability of diffusion models, but their analyses are based on L∞-accuracy

assumptions and their bounds are exponential with respect to problem parameters. The

first polynomial bound for L2-accurate scores is given by [LLT22] using the L∞ → L2

approach, assuming the target distribution satisfies log-Sobolev inequality, which is later

generalized in [LLT23] to all distributions with bounded support or sufficiently decaying

tails. [Che+23b] adopted the Girsanov approach and derived a bound in TV distance

of the OU process and the critically-damped Langevin diffusion [DVK22b] under very

mild assumptions on target distribution. [KFL22] reached the first convergence result in

Wasserstein-2 distance via the Fokker-Planck approach and corroborated it by numerical

experiments. [CLL22] derived an improved bound in KL divergence of OU process for

general target distributions under several smoothness settings. [CDD23] derived the first

polynomial bound of sampling from the probability-flow ODE (see Section 2) with accu-

rate scores using the restoration-degradation approach, while [Che+23c] went one step

further by taking score approximation error into consideration. Additionally, [KHR23;
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Che+23a; PMM23] provide further results on this topic.
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2 Background on Score-Based Generative Modeling

The term score refers to the gradient of the log-density of a probability distribution.

Score-based generative modeling refers to the generative models that first estimate the

score of the target distribution and then use SDEs or ODEs to sample from it. We

mainly discuss two important algorithms: inexact Langevin Monte Carlo and diffusion

model. See Yang Song’s PhD dissertation [Son22] for a comprehensive review.

2.1 Inexact Langevin Monte Carlo and Score-Matching

Let π ∝ e−V be the target distribution and sπ = ∇ log π = −∇V be its score. The

Langevin dynamics (also known as Langevin diffusion) is the solution (X̃t)t∈[0,∞) of

the SDE

dX̃t = sπ(X̃t)dt+
√

2dWt, (1)

where (Wt)t∈[0,∞) is the d-dimensional Brownian motion. Under mild conditions, this SDE

has a unique stationary distribution π. In practice, we can simulate Equation (1) using

the Euler-Maruyama scheme with a small step size h > 0:

X(k+1)h = Xkh + hsπ(Xkh) +
√

2(W(k+1)h −Wkh), X0 ∼ π0. (2)

For convenience, we can define an interpolated process as the following SDE, which is

equivalent to Equation (2) at all kh, k ≥ 0:

dX t = sπ(X t−)dt+
√

2dWt, t− :=

⌊
t

h

⌋
h; X t ∼ πt. (3)

Roughly speaking, when V is convex and smooth, and h is sufficiently small, πkh

converges to π as k →∞. This is the Langevin Monte Carlo (LMC) algorithm. See

[Che22] for a thorough review of the convergence analysis.

But when we only have i.i.d. samples from π but not the closed form of sπ, we need

to estimate sπ by a function s : Rd → Rd from a certain family (e.g., neural networks). A

typical method for training s is score-matching [Hyv05]: by minimizing

Eπ
[
∥s− sπ∥2

]
= Eπ

[
∥s∥2 + 2∇ · s

]
+ const,

where “const” represents a term independent of s. Other methods include denoising score-

matching [Vin11] and sliced score-matching [Son+19], which we do not discuss in detail.

The inexact LMC, denoted {Xt ∼ πt}t∈[0,∞), is the SDE that replaces the true score sπ

in LMC with the estimated score s:

dXt = s(Xt−)dt+
√

2dWt. (4)
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2.2 Diffusion Models

Diffusion models [SD+15; HJA20; SME21; Son+21b] are based on a simple idea:

gradually adding noise to the data distribution and recovering the data from noise step

by step. To achieve this task, they involve two processes: the forward process, which

transforms the data distribution into a noise distribution, and the backward process, which

recovers the data distribution from the noise distribution.

The forward process {yt}t∈[0,T ] is the solution to the following SDE:

dyt = ft(yt)dt+ gtdBt, (5)

where (Bt)t∈[0,T ] is a d-dimensional Brownian motion, f : [0, T ] × Rd → Rd, and g :

[0, T ] → Rd×d1. Denote the marginal distribution yt ∼ qt and the transition distribution

[yt2 |yt1 = y] ∼ qt2|t1(·|y) for t2 ≥ t1. q0 = pdata is the data distribution and qT ≈ pprior

where pprior is a distribution that is easy to sample from, e.g., Gaussian distribution.

According to [Son+21b], two common choices of f and g are:

1. Variance-exploding SDE (VESDE), derived from score matching Langevin diffusion

(SMLD, [SE19; SE20]):

dyt =

√
d[σ2

t ]

dt
dBt, 0 = σ0 ↗ σT ≫ 1. (6)

The transition distribution is yt|y0 ∼ N
(
y0, σ

2
t I
)
, and pprior ≈ N

(
0, σ2

T I
)
.

2. Variance-preserving SDE (VPSDE), derived from denoising diffusion probabilistic

models (DDPM, [HJA20]):

dyt = −1

2
βtytdt+

√
βtdBt, βt > 0. (7)

The transition distribution is yt|y0 ∼ N
(
αty0, σ

2
t I
)
, in which

αt = exp

(
−1

2

∫ t

0

βudu

)
, σt =

√
1− α2

t ,

and pprior = γd. A special case of VPSDE is the Ornstein-Uhlenbeck (OU) process2

with βt ≡ 2. In this paper, we will mainly focus on the case where the forward

process is VPSDE.

[And82; HP86] proved that under mild conditions, the time-reversal of Equation (5),

1Here we assume that g is a matrix. In most applications (e.g., VESDE or VPSDE, discussed later),
g is chosen as the identity matrix multiplied by a positive scalar.

2If we only focus on the marginal distribution, then the VPSDE is nothing but a time rescaling of the
OU process. See the proof of Lemma 1 for details.
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i.e, the process {x̃∗t := yT−t}t∈[0,T ], is a Markov diffusion process satisfying the SDE

dx̃∗t = −
(
fT−t(x̃

∗
t )− gT−tgTT−t∇ log qT−t(x̃

∗
t )
)

dt+ gT−tdWt, (8)

where (Wt)t∈[0,T ] is another d-dimensional Brownian motion. We refer to this process as

the backward SDE. By examining the Fokker-Planck equation, we can see that if the

backward SDE (Equation (8)) is initialized at x̃∗0 ∼ qT , then x̃∗t ∼ q←t := qT−t for all

t ∈ [0, T ], and in particular, the law of x̃∗T recovers the data distribution q0.

[HLC21] found that there is also a family of backward processes {x̃∗(λ)t }t∈[0,T ] (λ ≥ 0)

following the same Fokker-Planck equations as Equation (8):

dx̃
∗(λ)
t = −

(
fT−t(x̃

∗(λ)
t )− 1 + λ2

2
gT−tg

T
T−t∇ log qT−t(x̃

∗(λ)
t )

)
dt+ λgT−tdWt, (9)

In the case where λ = 0, the SDE is degenerated to an ODE, which is called the

probability-flow ODE (PFODE):

dx̃
∗
t = −

(
fT−t(x̃

∗
t )−

1

2
gT−tg

T
T−t∇ log qT−t(x̃

∗
t )

)
dt. (10)

There are three issues affecting the sampling quality from the diffusion model in prac-

tice:

1. Score approximation error : since ∇ log qt is unknown, we need to train a score

network st(·) to approximate it3. The typical training methods are denoising

score matching (DSM) and implicit score matching (ISM): by minimizing

1

2
Et∼Unif(0,T )

[
E
[
∥st(yt)−∇ log qt(yt)∥2Λt

]]
(:= JESM(Λ))

=
1

2
Et∼Unif(0,T )

[
E
[∥∥st(yt)−∇yt log qt|0(yt|y0)

∥∥2]
Λt

]
(:= JDSM(Λ)) + const,

=
1

2
Et∼Unif(0,T )

[
E
[
∥st(yt)∥2Λt

+ 2 ⟨⟨Λt,∇st(yt)⟩⟩
]]

(:= JISM(Λ)) + const,

where Λ : [0, T ] → Sd+ is a weighting matrix4, and “const” represents a term in-

dependent of the score network. We denote the first loss as the explicit score

matching (ESM) loss, which is intractable (since the true score is unknown).

Note that in the DSM loss, the score network is trained to fit ∇yt log qt|0(yt|y0) =

−yt − αty0
σ2
t

. Since yt|y0 ∼ N
(
αty0, σ

2
t I
)
, we can use the reparametrization st(·) =

− 1

σt
ϵt(·) so that the noise network ϵt(·) is trained to fit an approximate Gaussian

noise, which helps mitigate numerical instability as t ≈ 0.

After training, we plug it into Equations (8) to (10) to define a generative model.

3The s here is the function name, not the time variable.
4In most applications, Λt is chosen as an identity matrix multiplied by a positive scalar.
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We refer to these new processes as the plug-in backward processes:

dx̃t = −
(
fT−t(x̃t)− gT−tgTT−tsT−t(x̃t)

)
dt+ gT−tdWt, (11)

dx̃
(λ)
t = −

(
fT−t(x̃

(λ)
t )− 1 + λ2

2
gT−tg

T
T−tsT−t(x̃

(λ)
t )

)
dt+ λgT−tdWt, (12)

dx̃t = −
(
fT−t(x̃t)−

1

2
gT−tg

T
T−tsT−t(x̃t)

)
dt. (13)

Denote their marginal density at time t as p̃t, p̃
(λ)
t , and p̃t, respectively.

2. Initialization error : since qT is unknown (but is close to pprior), we have to initialize

the backward processes at pprior. This induces a bias in the output distribution.

3. Discretization error : to simulate the backward process, we need to discretize the

differential equations. This requires a massive number of discretization steps and

makes sampling much slower than other generative models such as VAE and GAN.

There are two issues deserving attention:

(a) The step size. The simplest choice is a uniform step size h = T/N for

some integer N , and sequentially simulate x0, xh, x2h, ..., x(N−1)h, xNh. [Lu+22]

reparametrized the VPSDE via the signal-noise-ratio Λt := log(αt/σt) (recall

that yt|y0 ∼ N
(
αty0, σ

2
t I
)
), and chosen the uniform step size on the space of

Λ. [Lu+22] also tried other self-adapted choices of step size.

(b) The discretization schemes. The simplest choice is the Euler-Maruyama scheme.

For VPSDE, [ZC23; ZTC23] found that applying the method of exponential in-

tegrator leads to an acceleration. Namely, for the backward process of VPSDE

with score parameterized by noise network, i.e.,

dx̃
(λ)
t =

1

2
βT−t

(
x̃
(λ)
t −

1 + λ2

σt
ϵT−t

(
x̃
(λ)
t

))
dt+ λ

√
βT−tdWt,

the discretization with exponential scheme is the process {x(λ)t }t∈[0,T ] satisfying

the SDE

dx
(λ)
t =

1

2
βT−t

(
x
(λ)
t −

1 + λ2

σt
ϵT−t−

(
x
(λ)
t−

) )
dt+ λ

√
βT−tdWt,

in which t− :=

⌊
t

h

⌋
h. We write xt := x

(0)
t and xt := x

(1)
t for simplicity. This is

a linear SDE and can be solved analytically. [ZTC23] proved that the denois-

ing diffusion implicit model (DDIM, [SME21]) is exactly the discretization of

the process {xt}t∈[0,T ]. Apart from using first-order approximation, there are

also works that try to use higher-order discretization schemes such as [Lu+22;

DVK22a; Tac+23].
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3 Analysis of Inexact Langevin Monte Carlo

This section explores how an imprecise score function affects LMC. As before, we as-

sume our target distribution is π ∝ e−V on Rd with score sπ, and run LMC as Equation (3)

with step size h, yielding the process {X t ∼ πt}t∈[0,∞). Denote the estimated score func-

tion as s : Rd → Rd, and run the inexact LMC as Equation (4) with step size h, yielding

the process {Xt ∼ πt}t∈[0,∞). We consider the following three concepts of accuracy for s:

1. L∞-accuracy: we say that s is ε-accurate in L∞ if

∥s− sπ∥L∞ ≤ ε;

2. L2-accuracy: we say that s is ε-accurate in L2 if

∥s− sπ∥L2(π) =
(
Eπ
[
∥s− sπ∥2

])1/2 ≤ ε;

3. MGF-accuracy: we say that s is (ε, λ)-accurate in moment generating function

(MGF)5 for some λ > 0 if

log Eπ
[
exp

(
λ ∥s− sπ∥2

)]
≤ ε.

Remark. Among these three error criteria of the score estimate, the L∞-accuracy is the

strongest and the L2-accuracy is the weakest. From the practical perspective, since we use

score matching and its variants to estimate the score, L2-accuracy is the most reasonable

assumption.

3.1 Bounds in Total-Variation Distance

We introduce the following theorem from [LLT22, Theorem 2.1], which, to the best of

our knowledge, is the state-of-the-art result of inexact LMC with L2-accurate score.

Theorem 1 (Convergence of Inexact LMC in Total-Variation Distance). Assume that π

satisfies CLSI-LSI and sπ is L-smooth. Assume s is ε-accurate in L2. For simplicity, let

L ∧ CLSI ≥ 1. Consider the accuracy requirement in TV and χ2: εTV, εχ ∈ (0, 1), and

denote K2
χ := χ2 (π0∥π). If

ε ≲
εTVε

3
χ

dL2C
5/2
LSI

(
log(2Kχ/ε2χ) ∨Kχ

) ,
then running Equation (4) with step size h ≍

ε2χ
dL2CLSI

and N ≍ dL2C2
LSI

ε2χ
log

2Kχ

ε2χ
it-

erations results in a distribution πNh, satisfying the following property: there exists a

5More precisely, the bound here is actually given in the cumulant generating function, the logarithm
of the moment generating function.

10
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distribution νNh such that

TV (πNh, νNh) ≤ εTV, χ2 (νNh∥π) ≤ ε2χ.

In particular, taking εχ = εTV, then TV (πNh, π) ≤ 2εTV.

The proof relies on a bridging lemma (Lemma 2) that converts an L2 error guarantee

to an L∞ error guarantee by excluding a “bad set”, on which the estimated score differs

greatly from the true score. We call this technique the L∞ → L2 approach. We sketch

the proof in Appendix B.1.

3.2 Bounds in Wasserstein-2 Distance

Previously, [BMR20, Theorem 13] provided the first bound of inexact LMC with L2-

accurate score in W2 distance, under the assumptions that both the true and the estimated

scores are Lipschitz and dissipative. However, their bound increases exponentially as the

number of iterations grows (which precludes convergence guarantees), and their proofs

contain several errors. We present a new upper bound of LMC with both L∞- and L2-

accurate score in the W2 distance, with minimal assumptions on the target distribution

and the score estimate. The main idea is to use Lemma 3 to derive and bound the

time-derivative of the W2 distance. The proof is in Appendix B.2.

Theorem 2 (Convergence of Inexact LMC in Wasserstein-2 Distance). Assume that s is

L0-Lipschitz and (−L1)-one-sided-Lipschitz for some L0, L1 > 0.

1. If s is ε∞-accurate in L∞, then when h <
L1

2L2
0

,

W2(πNh, π) ≤
(
Ce−L1h

)N
W2(π0, π) +D

1−
(
Ce−L1h

)N
eL1h − C

,

where C =
2L2

0h

L1

(
eL1h − 1

)
+ 1 and

D =
(
ε∞ + L0

√
2hd+ 2h2ε2∞ + 4L0dh2

) (
eL1h − 1

)
/L1.

2. If s is ε2-accurate in L2, then

W2(πNh, π) ≤ e−L1NhW2(π0, π) +
ε2 + L0

√
2hd

L1

(
1− e−L1Nh

)
+
b

L1

(eL1h − 1)
aN − e−L1Nh

aeL1h − 1
,

where a =
√

2(1 + L2
0h

2) and b = L0h
(
E
[
∥s(X0)∥2

]
+ 4d(1 + L2

0h
2)
)1/2

.

11
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3.3 Bounds in Rényi Divergence

This subsection presents an upper bound of LMC with MGF-accurate scores for Rényi

divergence. This result complements [WY22, Theorem 2 and 4], which analyzed LMC

with MGF-accurate score for KL divergence and LMC with L∞-accurate score for Rényi

divergence. Our proof adopts the technique from [Che+22], and when ε = 0, the bound

coincides with the one in [Che+22, Theorem 4]. The proof is in Appendix B.3.

Theorem 3 (Convergence of Inexact LMC in Rényi Divergence). Assume that π satisfies

CLSI-LSI and sπ is L-Lipschitz. Assume also that s is Ls-Lipschitz and (ε, λ)-accurate in

MGF for some λ ≍ q2CLSI. For simplicity, we assume L ∧ Ls ∧ CLSI ≥ 1. If we take the

step size h ≲
1

q2L2
sCLSI

∧ 1

L
, then the law of XNh has the following rate of decay:

Rq (πNh∥π) ≤ 3

4
exp

(
− Nh

4CLSI

)
R2 (π0∥π) + Õ

(
ε+ CLSIL

2
shdq

)
for all N ≥ N0 :=

⌈
2CLSI

h
log(q − 1)

⌉
.

3.4 Comparisons and Discussions

After obtaining convergence guarantees in different metrics, we now compare and

discuss our results based on different criteria of accuracy.

The L∞-accuracy is the simplest case. Under this assumption, the inexact LMC

converges to a distribution with a finite bias in Rényi divergence (see [WY22, Theorem

4]) and W2 distance (see the first part of Theorem 2). However, as is discussed earlier, this

assumption is too strong and unrealistic in real-world applications if we train the score

network via score-matching. Since the score-matching loss minimizes Eπ
[
∥s− sπ∥2

]
,

which is achieved by empirical loss minimization in practice, we can see that if A ⊂ Rd

has a low probability under π, then there are few training samples from A, so s can deviate

significantly from sπ in A.

The L2-accuracy assumption poses more challenges for deriving an upper bound. The-

orem 1 cleverly converts an error guarantee in L∞-accuracy to one in L2-accuracy by

excluding a “bad set”, where the estimated score differs greatly from the true score. This

technique depends on the properties of chi-square divergence and TV distance, and it

might not work for other divergences or distances. For the upper bound in W2 dis-

tance given in Theorem 2, it still grows exponentially as the one in [BMR20, Theorem

13]. Technically, the key to overcome this exponential dependence is to tightly bound

E
[
∥s(Xkh)∥2

]
, which is difficult without either the L∞-accuracy assumption or assuming

that s is the gradient of a strongly convex function (which is unlikely unless the target dis-

tribution is strongly log-concave and special designs such as input convex neural networks

[AXK17] are used). We leave this improvement for future work.

Why is this difficult? Actually, there are examples (e.g., [LLT22, Theorem D.1] and

12
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[WY22, Example 1]) showing that L2-accurate score estimate does not guarantee con-

vergence to the target distribution. More precisely, there exists a sequence of measures

{pn}n≥1 ⊂ Pac(R) with uniformly Lipschitz scores such that

lim
n→∞

Eγ1
[
∥∇ log pn −∇ log γ1∥2

]
= 0.

However, lim
n→∞

TV (pn, γ1) = 1. This means if we run inexact LMC with scores ∇ log pn,

which can be arbitrarily close in L2(γ1) to the score of the standard Gaussian, the asymp-

totic bias in TV distance (and thus for the Rényi divergence of all order) does not vanish

as n → ∞. Therefore, the error bound of inexact LMC only holds for a moderate time.

Moreover, to achieve the desired accuracy εTV and εχ given the L2 error of the estimated

score ε, we have to choose a sufficiently small Kχ, which means a warm start in chi-

square distance is necessary for achieving the desired accuracy. In contrast, for LMC with

exact scores, any initialization distribution works. To address the warm start require-

ment, [SE19] proposed to use annealed LMC, whose theoretical analysis is also obtained

in [LLT22].

The inadequacy of L2-accurate scores motivated [WY22] to introduce the MGF-

accuracy assumption, which draws inspiration from the Donsker-Varadhan variational

principle of KL divergence (Lemma 4). However, it is unclear whether the score trained

by score matching satisfies the MGF-accuracy assumption, and it is also a promising di-

rection to explore ways to train the score network to minimize the MGF error. Under the

MGF-accuracy assumption, as N → ∞ the asymptotic bias of inexact LMC is bounded

in Rényi divergence (see Theorem 3).

13
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4 Analysis of Diffusion Models

We review several major approaches for analyzing the approximation guarantee of

diffusion models and provide a critique for each approach after introducing the main

results.

4.1 The Variational Approach

Since we train the score-network via minimizing the score-matching loss, a smaller

loss implies higher accuracy of score approximation and better samples generated from

the target distribution. So what is the relationship between the score-matching loss and

the likelihood of plug-in backward processes? The following theorem [HLC21, theorem 4]

provides an answer to this question. A later work [Hua+22] generalized the result from

Euclidean space Rd to Riemannian manifolds.

Theorem 4 (Analysis of Diffusion Models, the Variational Approach). Consider the for-

ward process (Equation (5)) {yt ∼ qt}t∈[0,T ] and the plug-in backward SDE (Equation (11))

{x̃t ∼ p̃t}t∈[0,T ]. Assume that

E
[
exp

(
1

2

∫ T

0

∥st(yt)∥2gtgTt ds

)]
<∞. (14)

Then log p̃T (x) has a variational lower bound defined by

E∞0 (x) = E [log p̃0(yT )|y0 = x]

−
∫ T

0

E
[

1

2
∥st(yt)∥2gtgTt +

〈〈
gtg

T
t ,∇st(yt)

〉〉
−∇ · ft(yt)

∣∣∣∣y0 = x

]
dt.

(15)

The variational gap is

log p̃T (x)− E∞0 (x) =
1

2

∫ T

0

E
[
∥st(yt)−∇ log p̃T−t(yt)∥2gtgTt

∣∣∣y0 = x
]

dt. (16)

Finally, for the plug-in backward SDE family (Equation (12)) {x̃(λ)t ∼ p̃
(λ)
t }t∈[0,T ]. Denote

the corresponding variational lower bound of log p̃
(λ)
T (x) as E∞λ (x). Then

E [E∞λ (y0)] = E [E∞0 (y0)]−
(1− λ2)2

8λ2

∫ T

0

E
[
∥st(yt)−∇ log qt(yt)∥2gtgTt

]
dt . (17)

See Appendix B.4 for a sketch of proof. To interpret the result, we can see from

Equation (16) that the lower bound is tight (i.e., the variational gap is zero) when the

score is precise (i.e., st(·) ≡ ∇ log qt(·) for all t ∈ [0, T ]) and the backward SDE starts

at p̃0 = qT , which matches our expectation. In Equation (15), taking expectation w.r.t.

14
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y0 ∼ q0 = pdata, we have

E [log p̃T (y0)]

≥E [log p̃0(yT )]−
∫ T

0

E

[
1

2
∥st(yt)∥2gtgTt +

〈〈
gtg

T
t ,∇st(yt)

〉〉
−∇ · ft(yt)

]
dt,

(18)

in which the boxed term is the ISM loss with Λt = gtg
T
t ; similarly, the boxed term in

Equation (17) is exactly the ESM loss with Λt = gtg
T
t . This shows that minimizing the

score-matching loss maximizes a lower bound of the average log-likelihood (or equivalently,

minimizes an upper bound of KL
(
pdata

∥∥∥p̃(λ)T

)
) for the whole plug-in backward SDE family.

The ODE case (λ = 0) is a limiting case, but the right-hand side of Equation (17) is

meaningless when λ = 0 because the variational gap is infinity.

The variational approach has a limitation: it cannot be applied to the discrete sampling

scheme (see the remarks after the proof of Theorem 4 in Appendix B.4 for a detailed

argument). Moreover, we use the technical assumption (Equation (14)) derived from

the Novikov condition to ensure the validity of Girsanov theorem, but it is not easy to

verify. We note that this assumption has been neglected in [HLC21, Theorem 4] but is

mentioned in [Son+21a, Theorem 1]. Finally, the tightness of the variational lower bound

(Equations (15) and (17)) is unknown.

4.2 The Fokker-Planck Approach

Score-based generative modeling do not explicitly minimize any probability distance

or divergence between the data distribution and the output distribution, although we have

seen from the variational approach that it minimizes an upper bound of KL
(
pdata

∥∥∥p̃(λ)T

)
.

A natural question is: do score-based generative models minimize any other probability

distance or divergence? In this subsection, we follow [KFL22], which provided the first

convergence guarantee of W2 distance. The main idea is to use Lemma 3 to calculate the

time derivative of the W2 distance using the Fokker-Planck equation of the backward SDE

(Equation (8)) and the plug-in reverse process (Equation (11)). The following theorem

states the result.

Theorem 5 (Analysis of Diffusion Models, the Fokker-Planck Approach). Consider the

forward process {ys ∼ qs}s∈[0,T ] (Equation (5)) and the plug-in backward process {x̃t ∼
p̃t}t∈[0,T ] (Equation (11)). Assume that gt is a scalar, ft(·) is Lf (t)-Lipschitz, and st(·) is

Ls(t)-one-sided-Lipschitz. Then,

W2(pdata, p̃T ) ≤ ITW2(qT , p̃0)︸ ︷︷ ︸
initialization error

+

∫ T

0

Itg
2
t εtdt︸ ︷︷ ︸

score approximation error

,

where It = exp

(∫ t

0

(
Lf (r) + g2rLs(r)

)
dr

)
and ε2t = Eqt

[
∥st −∇ log qt∥2

]
.
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Theorem 5 does not consider the discretization of the plug-in backward SDE, so the

upper bound only consists of the initialization error and the score approximation error.

The upper bound is tight because when the plug-in backward SDE is initialized at qT

and the score is precise, then the output distribution p̃T recovers the data distribution

pdata. The proof of Theorem 5 is similar to that of Theorem 2, i.e., using Fokker-Planck

equation to derive and upper bound
d

dt
W 2

2 (q←t , p̃t). We omit the proof here and refer to

[KFL22, Theorem 1] for details. Note that in Theorem 2, to ensure convergence of inexact

LMC, we have to assume that the one-sided Lipschitz constant L1 of the estimated score

s is negative, while in Theorem 5, the one-sided Lipschitz constant Ls(t) of the estimated

score st(·) does not need to be negative, showing that diffusion models can deal with more

complex distributions than inexact LMC. We also remark that one-sided-Lipschitzness is

a strong global assumption and is hard to verify or even estimate the constant. This

assumption is crucial for deriving a convergence guarantee in W2 distance, while in the

case of TV distance or KL divergence the required assumptions on the score estimate is

much weaker.

4.3 The Girsanov Approach

We focus on [Che+23b] in this subsection, which gave an elegant proof of a bound in

TV distance of sampling from the backward SDE using the Girsanov change-of-measure

theorem. The paper considered the OU process {yt ∼ qt}t∈[0,T ] given by the SDE dys =

−ysds+
√

2dBs as the forward process, and the sampling process {xt ∼ pt}t∈[0,T ] given by

the SDE

dxt =
(
xt + 2sT−t−(xt−)

)
dt+

√
2dWt, t− :=

⌊
t

h

⌋
h, T = Nh. (19)

Note that a general VPSDE is only a time rescaling of the OU process, so the analysis

also applies to general VPSDEs, while the only difference is the scheme of choosing dis-

cretization points. We now state part the main theorem proved in [Che+23b] and sketch

the proof in Appendix B.5. We rewrite some part of the proof due to an error in the

paper (see the remark after the proof).

Theorem 6 (Analysis of Diffusion Models, the Girsanov Approach). 1. Smooth tar-

get distributions. Assume that pdata has a finite KL divergence to γd, and its

(2 + η)-order moment is finite for some η > 0. Denote its second order mo-

ment m2
2 = Epdata

[
∥·∥2

]
. Furthermore, assume that the score ∇ log qt is L-Lipschitz

(L ≥ 1) for all t ∈ [0, T ] and the approximation error

max
1≤k≤N

Eqkh
[
∥skh −∇ log qkh∥2

]
≤ ε2.
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Then if h ≲
1

L
, we have

TV (pdata, pT ) ≲
√

KL (pdata∥γd)e−T︸ ︷︷ ︸
initialization error

+
(
L
√
dh+ Lm2h

)√
T︸ ︷︷ ︸

discretization error

+ ε
√
T︸︷︷︸

score approximation error

.

(20)

2. Arbitrary target distribution with bounded support. Assume that pdata is

supported on B(0, R) with R ≥ 1. Let 0 < εW2 ≪
√
d and set τ ≍

ε2W2√
d(R ∨

√
d)
.

Then,

(a) W2(qτ , q) ≤ εW2;

(b) KL (qτ∥γd) ≲

√
d
(
R ∨
√
d
)3

ε2W2

;

(c) the score ∇ log qt is L-Lipschitz for all t ∈ [τ, T ], where L ≲
dR2(R ∨

√
d)2

ε4W2

.

The proof of Theorem 6 avoids the need for a difficult-to-check assumption (Equa-

tion (14)) that Theorem 4 relies on to apply Girsanov theorem. Instead, it uses an

approximation argument in abstract measure space based on the stopping times for con-

tinuous local martingales, which is a significant technical contribution.

The assumptions for the first part of the theorem, which only considers smooth target

distributions, are standard for analyzing score-based generative models. The analysis does

not require log-concavity or isoperimetric inequalities such as LSI for pdata, so it applies to

a wide range of highly non-log-concave distributions that are common in applications. For

simplicity, the paper assumes a uniform Lipschitz constant for the whole score trajectory.

Since the OU process transforms pdata to γd exponentially fast, we hypothesize that L

mainly depends on the smoothness of pdata, and leave it as future work to find a principled

way to upper bound L via the information of pdata
6. Also, for simplicity, the paper assumes

a uniform approximation error ε for all skh, 1 ≤ k ≤ N . As we have pointed out in

Section 2, a more reasonable assumption is to reparametrize the score network using noise

network and assume a uniform approximation error for all ϵkh, 1 ≤ k ≤ N . The obtained

bound (Equation (20)) clearly separates three sources of error, as we have discussed in

Section 2 (three issues affecting the sampling quality from the diffusion model).

In many real-world applications, the data distribution may be only supported on a

low-dimensional manifold of Rd (which is known as the manifold hypothesis), so the target

distribution may not have a Lebesgue density. To demonstrate the empirical success of

diffusion models in these situations, the second part of the theorem only assumes that

pdata is boundedly supported, which is realistic in many real-world applications, e.g., each

coordinate (i.e., pixel) of the images lies in a bounded range. The idea here is known as

early stopping : when sampling from the SDE Equation (19), we only sample the trajectory

6The case of convolution with standard Gaussian has been studied in [Lee+21, Lemma28].
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over a shorter time period [0, T−τ ] for some τ ≪ 1 (τ should be a multiple of the step size

h), and perceive xT−τ as the output of the model. From a theoretical perspective, since

st(·) = − 1

σt
ϵt(·) and ϵt(·) is trained to fit a Gaussian noise, we expect that the average

norm of ϵt(·) does not vary significantly for different t. But as t ↘ 0, σt vanishes, which

induces numerical instability for sampling. A typical choice of τ is 10−5, see [Son+21b,

Appendix C]. The second part of Theorem 6 implies that we can choose a sufficiently

small τ such that qτ is εW2-close in W2 distance to q0 = pdata. Now that the score

trajectory after τ is uniformly Lipschitz with a polynomial constant and the initialization

distribution qτ , now smooth enough, has a polynomial KL divergence to γd, we can apply

the first part of Theorem 6 to the SDE from τ to T and bound TV (qτ , pT−τ ).

Previously, building on the variational lower bound (Equation (18)) derived in Theo-

rem 4, [Fra+23] examined the optimal diffusion time T , revealing a trade-off in its selec-

tion: as T increases, the initialization error decreases but the score approximation error

and the discretization error increases. This trade-off is also reflected in the TV distance

upper bound (Equation (20)) under the assumption of a uniform score approximation

error.

Remark. The earlier version of [Che+23b]7 used the combination of the Girsanov approach

and the L∞ → L2 approach discussed in the next subsection. Instead of directly dealing

with the L2-accuracy assumption and use approximation results on abstract measure

spaces, it first studied the L∞-accuracy case (in which the error is also bounded by

Girsanov theorem), and use the L∞ → L2 bridging lemma (Lemma 2) to convert to the

L2-accuracy case. To circumvent the Novikov condition in using Girsanov theorem, it

employed a truncation argument, i.e., multiplying the drift term of the sampling process

(Equation (19)) with ϕR(xt) for some smooth function ϕR that is 1 in B(0, R) and 0 in

B(0, 2R)∁. The only difference in the bound is that the score approximation error scales

as ε2/3
N1/3

T 1/6
instead of ε

√
T . The author noted that both iteration complexity bounds

matched the state-of-the-art complexity bounds of sampling from a target distribution

satisfying LSI using LMC, see [Che22, Chapter 4 and 5].

4.4 The L∞ → L2 Approach

In this subsection, we follow [LLT22] and [LLT23], which uses the L∞ → L2 approach

similar in Theorem 1 to study the diffusion models under L2-accurate scores. The idea

is straightforward: we first assume the estimated score function is L∞-accurate at all

the discretization points, and then use the bridging lemma (Lemma 2) to reduce to the

case of L2-accurate score estimates. Nevertheless, to yield such a result requires intricate

deduction. We state the main result in the Theorem 7, and sketch the main idea of the

proof in Appendix B.6.

7See https://arxiv.org/pdf/2209.11215v1.pdf or https://openreview.net/references/pdf?

id=Kdx6vN8P7y.
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Theorem 7 (Analysis of Diffusion Models, the L∞ → L2 Approach). 1. Arbitrary tar-

get distribution with bounded support. Suppose that pdata is supported on

B(0, R) with R ≥
√
d and the score network has the following L2 error bound:

Eqt
[
∥st −∇ log qt∥2

]
≤ ε2

σ4
t

, ∀t ∈ [0, T ]. (21)

Then there exists a sequence of discretization points 0 = t0 < t1 < ... < tN ≤ T

with N ≲ poly (d,R, 1/εTV, 1/εW ) such that if ε = Õ

(
ε6.5TVε

5
W

R9d4.75

)
, then the following

discretization of plug-in backward process Equation (11)

dxt =
1

2
βT−t

(
xt + 2sT−t−(xt−)

)
dt+

√
βT−tdWt, xt ∼ pt, t ∈ [0, tN ], (22)

where t− := tk for t ∈ [tk, tk+1), 0 ≤ k ≤ N − 1, with a truncation and scaling step

x̂tN := α−1T−tNxtN I∥xtN∥≤R ∼ p̂tN ,

yields a distribution p̂tN that is εTV-close in TV distance to a distribution that is

εW -close in W2 distance from pdata. If in addition, the trajectory of the forward

process satisfies the following Hessian bound:

∥∥∇2 log qt(x)
∥∥
op
≤ C

σ2
t

for all t ∈ [0, T ], x ∈ Rd, for some C ≥ R2, (23)

then it suffices for ε = Õ

(
ε4TV

C2d

)
.

2. Smooth target distributions. Assume that the score network satisfies Equa-

tion (21) as above. Assume the target distribution pdata is sub-exponential (with

a fixed constant) and satisfies pdata ∝ e−V where ∇V is L-Lipschitz. Denote

R =
√
d∨ Epdata [∥·∥]. Then there exists a sequence of discretization points 0 = t0 <

t1 < ... < tN ≤ T with N ≲ poly (d,R, 1/εTV) such that if ε = Õ

(
ε11.5TV

R14d2.75L5

)
,

then the discretization Equation (22) of plug-in backward process yields a distribu-

tion qtN that is εTV-close in TV distance to pdata. If in addition, the Hessian bound

(Equation (23)) holds, then it suffices for ε = Õ

(
ε4TV

C2d

)
.

Both Theorems 6 and 7 employ the early-stopping technique and consider the case

of smooth distributions and boundedly-supported distributions. They derive the con-

vergence guarantee of diffusion models for general data distributions. Compared with

Theorem 6, Theorem 7 makes two main improvements. First, it considers non-uniform

discretization schemes for the VPSDEs. Second, it assumes a non-uniform score ap-

proximation error bound (Equation (21)). However, since ∇ log qt(x) ≍ 1

σt
as t ↘ 0

(which is explained in Section 2), we believe that the correct assumption should be
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Eqt
[
∥st −∇ log qt∥2

]
≤ ε2

σ2
t

, ∀t ∈ [0, T ].

4.5 The Restoration-Degradation Approach

This subsection discusses [CDD23], which offered a novel interpretation of the back-

ward SDE family (Equation (9)). Given the forward SDE defined by Equation (5), we

want to predict yT−t−h based on yT−t, where h ⪆ 0, the paper suggested two steps:

1. Restoration: predicting a point yT−t′ (where t′ > t + h) by conditional expectation

z := E [yT−t′ |yT−t], which can be approximately calculated by Tweedie formula

[Efr11].

2. Degradation: simulating the forward SDE by Euler-Maruyama scheme from yT−t′

to both yT−t and yT−t−h.

The following theorem is a summary of the main findings in [CDD23]:

Theorem 8 (Analysis of Diffusion Models, the Restoration-Degradation Approach). 1.

Brownian motion. Assume dyt = dBt. Then The scheme

Restoration: yT−t 7→ z := E [y0|yT−t] = yT−t + (T − t)∇ log qT−t(yT−t),

Degradation: z 7→

yT−t := z +
√
T − tγ,

yT−t−h := z +
√
T − t− hγ

yields

yT−t−h = yT−t +
h

2
∇ log qT−t(yT−t) + o(h), h→ 0. (24)

2. General diffusion, ODE sampler. Assume dyt = ft(yt)+gtdBt. We first define

the restoration operator

Rt→s(x) := x− (t− s)ft(x) + (t− s)g2t∇ log qt(x), s < t

which, when x ← yt ∼ qt, is an approximation of the conditional expectation

E [ys|yt], and the degradation operator

Dγ
s→t(x) := x+ (t− s)fs(x) + gs

√
t− sγ, s < t, γ ∈ Rd,

which, if x ← ys ∼ qs and γ ← Bt −Bs√
t− s

∼ N (0, I), is the Euler-Maruyama

discretization of predicting yt. Then the scheme

Restoration: yT−t 7→ z := E [yT−t−ℓh|yT−t] := RT−t→T−t−ℓh(yT−t),

Degradation: z 7→

yT−t := Dγ
T−t−ℓh→T−t(z),

yT−t−h := Dγ
T−t−ℓh→T−t−h(z)
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yields

yT−t−h = yT−t − h
(
fT−t(yT−t)−

1

2
g2T−t∇ log qT−t(yT−t)

)
+ o(h) (25)

as h→ 0, ℓ→∞, ℓh→ 0.

3. General diffusion, SDE sampler. Under the setting of 2, the scheme

Restoration: yT−t 7→ z := E [yT−t−ℓh|yT−t] := RT−t→T−t−ℓh(yT−t),

Degradation: z 7→

yT−t := Dγ
T−t−ℓh→T−t(z),

yT−t−h := Dγ′

T−t−ℓh→T−t−h(z)

where γ′ =

√
1− λ2

ℓ− 1
γ +

λ√
ℓ− 1

ν, ν ∼ N (0, I) being independent of γ, λ ≥ 0,

yields

yT−t−h = yT−t − h
(
fT−t(yT−t)−

1 + λ2

2
g2T−t∇ log qT−t(yT−t)

)
+ λ
√
hgT−tν + o(h)

(26)

as h→ 0, ℓ→∞, ℓh→ 0.

γ is called the “simulated noise” in [CDD23], since if z = E [y0|yT−t] is replaced by

y0 in 1 and if z = E [yT−t−ℓh|T − t] is replaced by yT−t−ℓh in 2 and 3, then the γ that

is used to degenerate y0 or yT−t−ℓh to yT−t should be standard Gaussian generated by

Brownian motion (Bt). By examining Equations (24) to (26) carefully, we can see that

they are actually the Euler discretization of the backward PFODE (Equation (10)) and

the Euler-Maruyama discretization of the backward SDE family (Equation (9)), which

provide an insightful interpretation of the backward processes.

We omit the proof of Theorem 8 in this paper and refer the readers to [CDD23, Section

3], as the proof only involves elementary infinitesimal calculation. The paper also proposed

a discretization analysis of a DDIM-type sampler based on this interpretation, but ignored

the score-approximation error (that is, the backward PFODE is simulated using the exact

score). The bound is expressed in KL divergence by examining the time-derivative using

Fokker-Planck equation, and it is polynomial in all the parameters.

4.6 The KL Divergence Decomposition Approach

We follow [CLL22] in this section, which gave an improved theoretical analysis of the

VPSDE under different smoothness assumptions. We state part of the results obtained

in [CLL22] in Theorem 9, and sketch the proof in Appendix B.7.

Theorem 9 (Analysis of Diffusion Models, the KL Divergence Decomposition Approach).

Consider the forward process {yt ∼ qt}t∈[0,T ] given by the SDE dyt = −1

2
ytdt+dBt. Given
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a sequence of discretization points 0 ≤ δ = t0 < t1 < ... < tN = T , denote hk = tk − tk−1
and t′k := T − tN−k. The sampling process {xt ∼ pt}t∈[0,T ] is defined by the SDE

dxt =

(
1

2
xt + sT−t−(xt−)

)
dt+ dWt, (27)

where t− := t′k for t ∈ [t′k, t
′
k+1), 0 ≤ k ≤ N − 1. Assume that the target distribution has

finite second moment m2
2 := Epdata

[
∥·∥2

]
<∞, and the score network satisfies the average

error bound
1

T

N∑
k=1

hk Eptk
[
∥stk −∇ log qtk∥

2] ≤ ε2. (28)

Then we have the following convergence guarantees under different assumptions:

1. Target distributions with trajectory smoothness. If furthermore, ∇ log qt is

L-Lipschitz (L ≥ 1) for all t ∈ [0, T ], max
1≤k≤N

hk ≤ 1 and T ≥ 1, then

KL (pdata∥pT ) ≲ (m2
2 + d)e−T︸ ︷︷ ︸

initialization error

+ Tε2︸︷︷︸
score approximation error

+
dT 2L2

N︸ ︷︷ ︸
discretization error

.

2. Smooth target distributions without trajectory smoothness. If further-

more, ∇ log q0 is L-Lipschitz, then by taking the exponentially decreasing (then con-

stant) step size hk = c

((
tk ∨

1

L

)
∧ 1

)
, where c =

logL+ T

N
≤ 1

Kd
, we have

KL (pdata∥pT ) ≲ (m2
2 + d)e−T︸ ︷︷ ︸

initialization error

+ Tε2︸︷︷︸
score approximation error

+
d2(logL+ T )2

N︸ ︷︷ ︸
discretization error

.

3. General distribution with early stopping. If there is a universal constant K

such that
hk
σ2
tk−1

≤ 1

Kd
for all 1 ≤ k ≤ N (recall from Section 2 that σt =

√
1− e−t

in this case), T ≥ 2, and δ ≤ 1

2
, then

KL
(
q←T−δ

∥∥pT−δ) ≲ (m2
2 + d)e−T︸ ︷︷ ︸

initialization error

+ Tε2︸︷︷︸
score approximation error

+ d2
N∑
k=1

h2k
σ4
tk−1︸ ︷︷ ︸

discretization error

.

Theorem 9 introduces a weaker assumption (Equation (28)) on the score approxima-

tion error in the form of weighted average. The first part of Theorem 9 is analogous to

the first part of Theorem 6, but the result is enhanced since TV distance is a weaker

metric than KL divergence by Pinsker inequality. The second part of Theorem 9 re-

laxes the assumption that the score trajectory ∇ log qt, t ∈ [0, T ] is uniformly Lipschitz,

which is difficult to check in practice. The result only depends on the Lipschitzness of
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the score of the target distribution (which is why the authors of [CLL22] call their result

“user-friendly” in their title), and we note that even if the Lipschitz constant L scales

exponentially with respect to d, we can still obtain a polynomial complexity guarantee

due to the term logL. Finally, in the third part, the convergence guarantee of general tar-

get distributions is obtained using early stopping, and here the step size is exponentially

decaying as t↗ T . To the best of our knowledge, this is the state-of-the-art convergence

guarantee of SDE sampler.
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5 Conclusions and Future Work

We have explored the approximation properties of score-based generative modeling,

demonstrating that under some mild assumptions of the target distribution and the dis-

cretization scheme, score-based generative models can approximate the target distribution

with arbitrary accuracy provided that the score estimate is sufficiently precise. The error

bounds in multiple probability divergences and distances scale at most polynomially with

respect to the problem parameters, which partially accounts for the empirical success

of score-based generative modeling. We conclude by suggesting some avenues for future

research:

1. A key aspect of the score-based generative models is the accurate approximation of

the score function by neural networks trained via score-matching and its variants. To

understand it, we can apply deep learning theories to examine the training dynamics

of stochastic gradient descent in minimizing the empirical loss, which would further

reveal the underlying mechanisms of score-based generative modeling and provide

an end-to-end guarantee of the score-based generative models.

2. Till now, the approximation properties of score-based generative models have been

well studied. However, unlike GAN (e.g., [Aro+17; Wu+19; YE22]), the generaliza-

tion properties have received less attention. For instance, [Pid22; De 22] examined

score-based generative models under manifold assumptions, which may offer some

insights into the generalization property; [Yan22, Section 6.4] proved that if the

score network is trained by empirical loss minimization (with sample size n) us-

ing continuous-time gradient flow, the generalization error of early stopping, i.e.,

KL (pdata∥pτ ) where the optimal τ is of order n1/6, scales as O
(
n−1/6

)
+ KL (qT∥γd)

and escapes from the curse of dimensionality. An intriguing question is whether the

extra noise from sampling from the backward SDE family (Equation (12)) using

larger λ’s, which empirically degrades the sampling quality in terms of metrics such

as FID and negative log-likelihood, can help reduce the generalization error. We

defer the investigation of these questions to future work.

3. Diffusion models construct a “bridge” between the target distribution and noise

distribution via (stochastic or ordinary) differential equations, which have achieved

astounding success and inspired many new model designs that have also attained

the state-of-the-art performance on various datasets and tasks. Some examples

are the Ω-Bridge Diffusion Model [Liu+22; Liu+23a], the Rectified Flow [LGL23;

Liu22], the Flow-Matching model [Lip+23; CL23; Poo+23], the Stochastic Inter-

polants framework [AVE23; ABVE23], the Poisson Flow generative model [Xu+22b;

Xu+23], the “GenPhys” (Generative Models from Physical Processes) [Liu+23b],

the Consistency Model [Son+23], and the Reflected Diffusion Model [LE23]. We

conjecture that the techniques used to analyze the approximation properties of
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score-based generative modeling can also be applied to these models and frame-

works, and we defer the analysis and comparison to future work.
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Theoretical Analysis of the Approximation Properties of Score-Based Generative Models

A Notations and Definitions

Min and max. We write a ∧ b := min(a, b) and a ∨ b := max(a, b).

Asymptotic notations. We use a = O(b) or a ≲ b to indicate that there exists a

universal constant C > 0 s.t. a ≤ Cb. We use a = Ω(b) or a ≳ b to indicate that there

exists a universal constant c > 0 s.t. a ≥ cb. a = Θ(b) or a ≍ b means both a = O(b) and

b = O(a). We use Õ, Θ̃, Ω̃ to hide logarithm terms, e.g., Õ(·) = O(·) logO(·)(·).

Inner products and norms. For a, b ∈ Rd, we write ⟨a, b⟩ := aTb =
d∑
i=1

aibi;

for A,B ∈ Rk×l, we write ⟨⟨A,B⟩⟩ := tr(ATB) =
k∑
i=1

l∑
j=1

AijBij. The Euclidean norm

∥x∥ =
√
⟨x, x⟩ for x ∈ Rd, and we define ∥x∥Λ :=

√
⟨x,Λx⟩ for Λ ∈ Sd+, i.e., Λ is a

symmetric positive semidefinite d × d matrix. The Euclidean ball centered at x with

radius R is denoted B(x,R). For f, g : Rd → Rd′ and a distribution p on Rd, denote

⟨f, g⟩p :=

∫
Rd

⟨f(x), g(x)⟩ p(dx), and ∥f∥L2(p) :=
√
⟨f, f⟩p.

Functions. We say that f : Rd → Rd′ is L-Lipschitz for some L ≥ 0 if ∥f(x)− f(y)∥ ≤
L ∥x− y∥ for all x, y ∈ Rd, and that it is L-one-sided-Lipschitz for some L ∈ R if

⟨x− y, f(x)− f(y)⟩ ≤ L ∥x− y∥2 for all x, y ∈ Rd. Clearly, L-Lipschitzness implies

L-one-sided-Lipschitzness. “⇒” refers to uniform convergence.

Derivatives. We use ∇, ∇·, ∇2 and ∆ to represent the gradient, divergence, Hessian,

and Laplacian operators, respectively. For a function that has both position and time

variables, the operators above are applied only on the position variable.

Measures and probability. For a metric space Ω (e.g., Rd), we use P(Ω) to denote

the set of probability measures on Ω. The law of a random variable X on a probability

space (Ω,F ,P) is defined as X♯P. “⇀” stands for the narrow convergence of measures

(see, e.g., [AGS08, Section 5.1]). For µ, ν ∈ P(Ω), we use
dµ

dν
to represent the Radon-

Nikodým derivative of µ with respect to ν if µ≪ ν (i.e., µ is absolutely continuous with

respect to ν), and ∞ if otherwise. For µ ∈ P(Ω) and a measurable mapping T : Ω→ Ω′,

the push-forward probability measure is denoted T♯µ ∈ P(Ω′) with the definition

(T♯µ)(A) = µ(T−1(A)) = µ{ω ∈ Ω : T (ω) ∈ A},

for all measurable sets A ⊂ Ω′. Equivalently, if a random variable X ∼ µ, then T (X) ∼
T♯µ. P2(Rd) stands for the set of probability measures with finite second moment on

Rd, and P2,ac(Rd) (Pac(Rd)) is the subset of P2(Rd) (P(Rd)) containing all probability

measures that are absolutely continuous with respect to the Lebesgue measure. Unless

otherwise mentioned, we will always identify the probability density function (i.e., the

Radon-Nikodým derivative with respect to the Lebesgue measure), if it exists, of a random

variable on Rd with its law, a measure in Pac(Rd). We use γd to denote the d-dimensional

standard Gaussian, N (0, Id) and δa to denote the point mass at a.
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Optimal transport (OT). For µ, ν ∈ P2(Rd), the Wasserstein-2 (W2) distance

between µ and ν is defined as

W2(µ, ν) = inf
γ∈Π(µ,ν)

(∫
∥x− y∥2 γ(dx, dy)

)1/2

,

where Π(µ, ν) is the set of all couplings of (µ, ν). The coupling γ∗ that achieves the

infimum (which exists and is unique), denoted Π∗(µ, ν), is called the OT plan between µ

and ν. In fact, there exists T : Rd → Rd such that T♯µ = ν and γ∗ = (id× T )♯(µ), which

is called the OT map from µ to ν. By Brenier theorem, there exists a convex function

ϕ : Rd → R such that T = ∇ϕ, and ∇ϕ∗ = (∇ϕ)−1 is the OT map from ν to µ (note that

ϕ∗(y) := sup
x∈Rd

{⟨x, y⟩ − ϕ(x)} is the convex conjugate of ϕ). For a comprehensive overview

of OT, we refer the readers to standard textbooks [Vil08; Vil21; AGS08]. See also [Che22,

Chapter 1] for a short guide of OT.

Probability distances and divergences. Consider µ, ν ∈ P(Rd). The total-

variation (TV) distance is defined as

TV (µ, ν) = sup
A⊂Rd

|µ(A)− ν(A)| .

The following probability divergences require the Radon-Nikodým derivative ρ :=
dµ

dν
.

The Rényi divergence of order q ∈ (1,∞) is defined as

Rq (µ∥ν) =
1

q − 1
log Eπ [ρq] ,

which is increasing in q. As q ↘ 1,

Rq (µ∥ν)→ Eµ [log ρ] = KL (µ∥ν) ,

which is the Kullback-Leibler (KL) divergence; when q = 2,

exp (R2 (µ∥ν))− 1 = Eν
[
(ρ− 1)2

]
= χ2 (µ∥ν) ,

which is the chi-square divergence; as q →∞, Rq (µ∥ν)→ R∞ (µ∥ν) := log ∥ρ∥L∞(π). The

Rényi-Fisher divergence of order q ∈ (1,∞) is defined as

FIq (µ∥ν) =
4

q

Eν
[∥∥∇ (ρq/2)∥∥2]
Eν [ρq]

,

and when q ↘ 1, it converges to the Fisher divergence

FI (µ∥ν) = Eµ
[
∥∇ log ρ∥2

]
.
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Isoperimetric inequalities. We say that π ∈ P(Rd) satisfies a log-Sobolev inequality

(LSI) with constant CLSI, or in short, π satisfies CLSI-LSI, if for all sufficiently smooth

functions f on Rd,

Entπ
(
f 2
)
≤ 2CLSI Eπ

[
∥∇f∥2

]
,

where the entropy functional is defined as Entµ (g) := Eµ
[
g log

g

Eµ [g]

]
for µ-a.s. positive

function g. By definition, if π satisfies CLSI-LSI, then

Rq (µ∥π) ≤ qCLSI

2
FIq (µ∥π) .

It is known that α-strongly-log-concave distributions satisfy (1/α)-LSI. For a compre-

hensive overview of Markov semigroups and isoperimetric inequalities, we refer the readers

to [BGL+14]. See also [Che22, Chapter 1, 2] for a brief overview.
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B Proofs of the Main Theorems

B.1 Sketch of Proof of Theorem 1

The main idea is to first consider the case of L∞-accurate score, and then convert

to the case of L2-accurate score via the bridging lemma (Lemma 2). More precisely, we

define three processes using the same notations as Lemma 2:

dX̃t = sπ(X̃t)dt+
√

2dWt, X̃t ∼ π;

dXt = s(Xt−)dt+
√

2dWt, Xt ∼ πt;

dZt = b(Zt−)dt+
√

2dWt, Zt ∼ νt, (ν0 ← π0),

where

b = s IB∁ + sπ IB, B = {∥s− sπ∥ ≥ ε∞}

for some ε∞ > 0 that will be determined later. B is the set in which the estimated score s

has a large deviation from the true score sπ, so it is called the “bad set”. Since (Xt) and

(Zt) has the same initialization µ0 and are driven by the same Brownian motion, we can

see that as long as Zkh ∈ B∁ for all k = 0, 1, ..., N − 1, then XNh = ZNh, which satisfies

the assumption in Lemma 2. By definition, b is ε∞-accurate in L∞, and s is ε-accurate

in L2(π). Using Markov’s inequality,

P
(
X̃t ∈ B

)
= π (∥s− sπ∥ ≥ ε∞) ≤ 1

ε2∞
Eπ
[
∥s− sπ∥2

]
≤ ε2

ε2∞
.

To use Lemma 2, we only need to bound χ2 (νkh∥π). We can write out the time-

derivative of chi-square divergence using the generalized Fokker-Planck equation (Lemma 6),

and then bound it as

d

dt
χ2 (νt∥π) ≤ − 1

4CLSI

χ2 (νt∥π) +O
(
ε2∞ + L2dh

)
if ε∞ ≲

1

C
1/2
LSI

, h ≲
1

L2dCLSI

,

using the assumption of π satisfies CLSI-LSI (note that LSI can not be weakened to PI in

the proof). We omit the derivation here and refer the interested reader to [LLT22, Ap-

pendix B.2] for details, whose technique is similar to [Che+22] (see also [Che22, Chapter

5]). Integrating from 0 to kh, we have

χ2 (νkh∥π) ≤ exp

(
− kh

4CLSI

)
K2
χ +O

(
ε2∞CLSI + L2dhCLSI

)
.

Now, to have χ2 (νNh∥π) ≤ ε2χ, it suffices

exp

(
− Nh

4CLSI

)
K2
χ ≤

1

2
ε2χ, ε2∞CLSI ∨ L2dhCLSI ≲ ε2χ,
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which is available if

Nh ≳ CLSI log
2Kχ

ε2χ
, h ≲

ε2χ
dL2CLSI

, ε∞ ≲
εχ

C
1/2
LSI

.

From now on we assume h ≍
ε2χ

dL2CLSI

, which implies N ≳
dL2C2

LSI

ε2χ
log

2Kχ

ε2χ
. Using

Lemma 2,

TV (πNh, νNh) ≤
N−1∑
k=0

(
1 + χ2 (νkh∥π)

)1/2 P
(
X̃k ∈ B

)1/2
≲

ε

ε∞

(
N +Kχ

CLSI

h

)
.

To bound it by εTV, it suffices

ε ≲ ε∞εTV

(
1

N
∧ h

CLSIKχ

)
.

Note that ε is a fixed parameter given in the problem setting but N can vary when running

the algorithm. Therefore, we have to take N ≍ dL2C2
LSI

ε2χ
log

2Kχ

ε2χ
, implying

ε ≲
εTVε

3
χ

dL2C
5/2
LSI

(
log(2Kχ/ε2χ) ∨Kχ

) .

B.2 Proof of Theorem 2

We abbreviate wt := W2(πt, π) for simplicity. By Lemma 6, πt satisfies

∂tπt +∇ ·
(
πt
(
−∇ log πt + E

[
s(Xt−)|Xt = ·

]))
= 0.

Using Lemma 3,

1

2

d

dt
w2
t =

〈
− (Tπt→π − id) ,−∇ log πt + E

[
s(Xt−)|Xt = ·

]〉
πt

= E(x,y)∼Π∗(πt,π) [⟨y − x,∇ log πt(x)−∇ log π(y)⟩]

+ E(x,y)∼Π∗(πt,π)
[〈
y − x,∇ log π(y)− E

[
s(Xt−)|Xt = x

]〉]
≤ E(x,y)∼Π∗(πt,π)

[〈
y − x, sπ(y)− E

[
s(Xt−)|Xt = x

]〉]
= E(x,y)∼Π∗(πt,π)

[〈
y − x, E

[
s(Xt)− s(Xt−)|Xt = x

]〉]
+ E(x,y)∼Π∗(πt,π) [⟨y − x, s(y)− s(x)⟩]

+ E(x,y)∼Π∗(πt,π) [⟨y − x, sπ(y)− s(y)⟩] .

The inequality is due to Lemma 7. By the one-sided-Lipschitzness, the second term is
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bounded above by

E(x,y)∼Π∗(πt,π)
[
−L1 ∥y − x∥2

]
= −L1w

2
t ,

and using Cauchy-Schwartz inequality, the third term is bounded above by

(
E(x,y)∼Π∗(πt,π)

[
∥y − x∥2

])1/2 (Eπ [∥s− sπ∥2])1/2 ≤
ε2wt, under L2(π)-accuracy;

ε∞wt, under L∞-accuracy.

Now, the first term is bounded above by

(
E(x,y)∼Π∗(πt,π)

[
∥y − x∥2

])1/2 (Ex∼πt [∥∥E [s(Xt−)− s(Xt)|Xt = x
]∥∥2])1/2

≤ wt

(
Ex∼πt

[
E
[∥∥s(Xt−)− s(Xt)

∥∥2 |Xt = x
]])1/2

= wt

(
E
[∥∥s(Xt−)− s(Xt)

∥∥2])1/2
≤ L0wt

(
E
[∥∥Xt −Xt−

∥∥2])1/2 .
Note that

E
[∥∥Xt −Xt−

∥∥2] = E
[∥∥∥−s(Xt−)(t− t−) +

√
2(Wt −Wt−)

∥∥∥2]
= (t− t−)2 E

[∥∥s(Xt−)
∥∥2]+ 2(t− t−)d

≤ h2 E
[∥∥s(Xt−)

∥∥2]+ 2hd.

To bound E
[
∥s(Xkh)∥2

]
, we consider two cases separately.

Case 1: L∞-accuracy. We have

E
[
∥s(Xkh)∥2

]
≤ 2E

[
∥s(Xkh)− sπ(Xkh)∥2

]
+2E

[
∥sπ(Xkh)∥2

]
≤ 2ε2∞+2E

[
∥sπ(Xkh)∥2

]
.

Remark. Without the L∞-accuracy assumption, it is challenging to give a satisfactory

upper bound of E
[
∥s(Xkh)− sπ(Xkh)∥2

]
. Besides, if we are given MGF-accuracy as-

sumption, then we have
d

dt
W2(πt, π) ≲ KL

(
πt−
∥∥π) + . . . , but in general KL divergence

cannot be upper bounded by W2 distance unless we introduce more assumptions. We

leave it as a future work to investigate how we could use the MGF-accuracy assumption

to bound E
[
∥s(Xkh)∥2

]
.

To bound the second term, note that

∥sπ(x)∥2 ≤ 2 ∥sπ(x)− sπ(y)∥2 + 2 ∥sπ(y)∥2 ≤ 2L2
0 ∥x− y∥

2 + 2 ∥sπ(y)∥2 .

Taking expectations over (x, y) ∼ Π∗(πkh, π) yields

E
[
∥sπ(Xkh)∥2

]
≤ 2L2

0w
2
kh + 2Eπ

[
∥sπ∥2

]
.
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Denote π = e−V . sπ = −∇V being L0-Lipschitz implies the Lebesgue-a.e. existence

of ∇2V , which also satisfies
∥∥∇2V

∥∥
op
≤ L0 Lebesgue-a.e, which yields ∇2V ⪯ L0I =⇒

∆V = tr(∇2V ) ≤ L0d. Using integration by parts,

Eπ
[
∥sπ∥2

]
= −

∫
⟨−π∇V,∇V ⟩ dx = −

∫
⟨∇π,∇V ⟩ dx =

∫
π∆V dx ≤ L0d,

Therefore,

E
[
∥s(Xkh)∥2

]
≤ 2ε2∞ + 4L2

0w
2
kh + 4L0d.

As a result, for t ∈ [kh, (k + 1)h),

dwt
dt

≤ −L1wt + ε∞ + L0(2hd+ h2(2ε2∞ + 4L2
0w

2
kh + 4L0d))1/2,

=⇒ d

dt

(
eL1twt

)
≤ eL1t

ε∞ + L0

√
2hd+ 2h2ε2∞ + 4L0dh2︸ ︷︷ ︸

:=A

+ 2L2
0h︸ ︷︷ ︸

:=L1B

wkh

 ,

since
√
u+ v ≤

√
u+
√
v for u, v ≥ 0. Therefore, if we denote C := B

(
eL1h − 1

)
+ 1 and

D :=
A

L1

(
eL1h − 1

)
, then

eL1(k+1)hw(k+1)h ≤ CeL1khwkh +DeL1kh.

Iterating, we obtain

wNh ≤
(
Ce−L1h

)N
w0 +D

1−
(
Ce−L1h

)N
eL1h − C

.

Note that when h <
L1

2L2
0

, we have eL1h > C, so as N → ∞, the bound converges to

D

eL1h − C
=

A

L1(1−B)
, a term that reaches 0 if both ε∞ and h vanish.

Case 2: L2-accuracy. We have

E
[∥∥s(X(k+1)h)

∥∥2] ≤ 2E
[∥∥s(X(k+1)h)− s(Xkh)

∥∥2]+ 2E
[
∥s(Xkh)∥2

]
≤ 2L2

0 E
[∥∥X(k+1)h −Xkh

∥∥2]+ 2E
[
∥s(Xkh)∥2

]
= 2L2

0

(
h2 E

[
∥s(Xkh)∥2

]
+ 2hd

)
+ 2E

[
∥s(Xkh)∥2

]
= 2(1 + L2

0h
2)E

[
∥s(Xkh)∥2

]
+ 4L2

0hd,

which implies

E
[
∥s(Xkh)∥2

]
≤ (2(1 + L2

0h
2))k

(
E
[
∥s(X0)∥2

]
+ 4d(1 + L2

0h
2)
)
.
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As a result, for t ∈ [kh, (k + 1)h),

dwt
dt

≤ −L1wt + ε2 + L0

[
h2(2(1 + L2

0h
2))k

(
E
[
∥s(X0)∥2

]
+ 4d(1 + L2

0h
2)
)

+ 2hd
]1/2

≤ −L1wt + ε2 + akb+ c,

where a =
√

2(1 + L2
0h

2), b = L0h
(
E
[
∥s(X0)∥2

]
+ 4d(1 + L2

0h
2)
)1/2

, and c = L0

√
2hd.

Consequently,
d

dt

(
eL1twt

)
≤ eL1t(ε2 + akb+ c), yielding

eL1(k+1)hw(k+1)h − eL1khwkh ≤
ε2 + c

L1

(
eL1(k+1)h − eL1kh

)
+

b

L1

(
eL1h − 1

) (
aeL1h

)k
.

Iterating, we have

wNh ≤ e−L1Nhw0 +
ε2 + c

L1

(
1− e−L1Nh

)
+

b

L1

(eL1h − 1)
aN − e−L1Nh

aeL1h − 1
.

Nevertheless, this upper bound grows exponentially fast as N →∞.

B.3 Proof of Theorem 3

Denote ϕt :=
πt
π

and ψt :=
ϕq−1t

Eπ [ϕqt ]
. Note that E [ψt(Xt)] = Eπt [ψt] = 1, which

implies that P̃ defined by
dP̃
dP

= ψt(Xt) is a probability measure. We have

d

dt
Rq (πt∥π) ≤ −3

4
FIq (πt∥π) + q E

[
ψt(Xt)

∥∥sπ(Xt)− s(Xt−)
∥∥2] . (29)

Equation (29) can be proved similarly to [WY22, Lemma 10]. By triangle inequality,

E
[
ψt(Xt)

∥∥sπ(Xt)− s(Xt−)
∥∥2] is upper bounded by

2E
[
ψt(Xt)

∥∥s(Xt)− s(Xt−)
∥∥2]+ 2E

[
ψt(Xt) ∥sπ(Xt)− s(Xt)∥2

]
.

Denote ξ :=
Wt −Wt−√
t− t−

∼ N (0, Id). Then
∥∥s(Xt)− s(Xt−)

∥∥2 is upper bounded by

L2
s

∥∥Xt −Xt−

∥∥2 = L2
s

∥∥∥(t− t−)s(Xt−) +
√

2(Wt −Wt−)
∥∥∥2

≤ 2L2
s(t− t−)2

∥∥s(Xt−)
∥∥2 + 4L2

s(t− t−) ∥ξ∥2

≤ 4L2
s(t− t−)2

(
∥s(Xt)∥2 +

∥∥s(Xt)− s(Xt−)
∥∥2)+ 4L2

s(t− t−) ∥ξ∥2

≤ 4L2
sh

2 ∥s(Xt)∥2 + 4L2
sh ∥ξ∥

2 + 4L2
sh

2︸ ︷︷ ︸
≤ 1

2

∥∥s(Xt)− s(Xt−)
∥∥2 (

if h ≤ 1

3Ls

)
.
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Therefore,

∥∥s(Xt)− s(Xt−)
∥∥2 ≤ 8L2

sh
2 ∥s(Xt)∥2 + 8L2

sh ∥ξ∥
2

≤ 16L2
sh

2
(
∥sπ(Xt)∥2 + ∥s(Xt)− sπ(Xt)∥2

)
+ 8L2

sh ∥ξ∥
2 .

As a result,

E
[
ψt(Xt)

∥∥sπ(Xt)− s(Xt−)
∥∥2]

≤ 32L2
sh

2 Eψtπt

[
∥sπ∥2

]
+ 2

(
16L2

sh
2 + 1

)
Eψtπt

[
∥s− sπ∥2

]
+ 16L2

shE
[
ψt(Xt) ∥ξ∥2

]
.

(I) By Lemma 8,

Eψtπt

[
∥sπ∥2

]
≤ FI (ψtπt∥π) + 2Ld = 4

Eπ
[∥∥∥∇(ϕq/2t

)∥∥∥2]
Eπ [ϕqt ]

+ 2Ld = qFIq (πt∥π) + 2Ld.

(II) By Lemma 4,

Eψtπt

[
∥s− sπ∥2

]
=

1

λ
Ẽ
[
λ ∥s− sπ∥2

]
≤ 1

λ

(
KL
(
P̃
∥∥∥P)+ log E

[
exp

(
λ ∥s− sπ∥2

)])
≤ 1

λ

(
KL
(
P̃
∥∥∥P)+ ε

)
.

By the definition of P̃, we can upper bound KL
(
P̃
∥∥∥P) as follows:

KL
(
P̃
∥∥∥P) = EP

[
dP̃
dP

log
dP̃
dP

]
= E [ψt(Xt) logψt(Xt)] = Eψtπt [logψt]

= Eψtπt

[
log

ϕq−1t

Eπ [ϕqt ]

]
= Eψtπt

[
log

ϕq−1t

Eπt
[
ϕq−1t

]]

=
q − 1

q
Eψtπt

[
log

ϕqt(
Eπt
[
ϕq−1t

])q/(q−1)
]

=
q − 1

q

Eψtπt

[
log

ϕqt
Eπt
[
ϕq−1t

]]− 1

q − 1
log Eπt

[
ϕq−1t

]︸ ︷︷ ︸
≥0


≤ q − 1

q
Eψtπt

[
log

ψtπt
π

]
=
q − 1

q
KL (ψtπt∥π) (Jensen’s inequality)

≤ q − 1

q

CLSI

2
FI (ψtπt∥π) =

q − 1

2
CLSIFIq (ψtπt∥π) .
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(III) By Lemma 4,

E
[
ψt(Xt) ∥ξ∥2

]
= Ẽ

[
∥ξ∥2

]
= Ẽ

[
(∥ξ∥ − E [∥ξ∥] + E [∥ξ∥])2

]
≤ 2 (E [∥ξ∥])2 + 2Ẽ

[
(∥ξ∥ − E [∥ξ∥])2

]
≤ 2E

[
∥ξ∥2

]
+ 16Ẽ

[
1

8
(∥ξ∥ − E [∥ξ∥])2

]
≤ 2d+ 16

[
KL
(
P̃
∥∥∥P)+ log E

[
exp

(
1

8
(∥ξ∥ − E [∥ξ∥])2

)]]
≤ 2d+ 16

[
q − 1

2
CLSIFIq (πt∥π) + log 2

]
.

The last inequality is due to Lemma 9. Therefore, we have the following bound for

Equation (29):

d

dt
Rq (πt∥π) ≤[
−3

4
+ 32q2L2

sh
2 +

2q

λ

(
16L2

sh
2 + 1

) q − 1

2
CLSI + 128qL2

sh(q − 1)CLSI

]
FIq (πt∥π)

+ 64qL2
sh

2Ld+
2q

λ
(16L2

sh
2 + 1)ε+ 32L2

shq(d+ 8 log 2).

To make the coefficient before FIq (πt∥π) negative, we let

32q2L2
sh

2 ≤ 1

6
,

2q

λ

(
16L2

sh
2 + 1

) q − 1

2
CLSI ≤

1

6
, 128qL2

sh(q − 1)CLSI ≤
1

6
,

which is available if h ≲
1

q2L2
sCLSI

, since we have assumed L∧Ls ∧CLSI ≥ 1. As a result,

the order of λ should be λ ≍ q2CLSI, since L2
sh

2 ≲ 1. In this case,

d

dt
Rq (πt∥π) ≤ −1

4
FIq (πt∥π) +O

(
qL2

sh
2Ld+

qε

λ
+ L2

shqd
)

≤ −1

4
FIq (πt∥π) +O

(
ε

qCLSI

+ L2
shqd

) (
when h ≲

1

L

)
≤ − 1

2qCLSI

Rq (πt∥π) +O

(
ε

qCLSI

+ L2
shqd

)
(LSI).

Therefore,

d

dt

(
exp

(
t− kh
2qCLSI

)
Rq (πt∥π)

)
≲

ε

qCLSI

+ L2
shqd, t ∈ [kh, (k + 1)h].

Iterating, we have

Rq (πNh∥π) ≤ exp

(
− Nh

2qCLSI

)
Rq (π0∥π) +O

(
ε+ CLSIL

2
shq

2d
)
. (30)
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Remark. We would like to kindly point out a mistake in [WY22, Theorem 4] in the v1

version on arXiv. In the proof of Lemma 11, the first equality after “by Lemma 8” in

upper bounding A3 is wrong since Eρ0t
[
ψt(xt) ∥z0∥2

]
̸= Eρ0t

[
∥z0∥2

]
= d.

We now use the hypercontractivity argument to improve the dependence on q, as is

done in [Che+22]. We consider the case q ≥ 3 and define the time-dependent parameter

qt := 1 + (q0 − 1) exp

(
t

2CLSI

)
. Then similar to Equation (29), we have

d

dt

(
1

qt
log Eπ [ϕqtt ]

)
≤ −qt − 1

2qt
FIqt (πt∥π)+(qt−1)E

[
ψt(Xt)

∥∥sπ(Xt)− s(Xt−)
∥∥2] . (31)

We leave the verification of Equation (31) to the readers. We apply Equation (31)

with q0 = 2 and for t ≤ N0h =

⌈
2CLSI

h
log(q − 1)

⌉
h. Note that q ≤ qN0h ≤ 2q. Then

from the previous proof,

d

dt

(
1

qt
log Eπ [ϕqtt ]

)
≤[

−qt − 1

2qt
+ (qt − 1)

(
32qtL

2
sh

2 +
2

λ

(
16L2

sh
2 + 1

) qt − 1

2
CLSI + 128L2

sh(qt − 1)CLSI

)]
FIq (πt∥π) + (qt − 1)

(
64L2

sh
2Ld+

2

λ
(16L2

sh
2 + 1)ε+ 32L2

sh(d+ 8 log 2)

)
.

Similarly, if h ≲
1

Lsqt
∧ 1

L2
sq

2
tCLSI

∧ 1

L
≲

1

L2
sq

2CLSI

∧ 1

L
and λ ≍ q2CLSI, then

d

dt

(
1

qt
log Eπ [ϕqtt ]

)
≤ −qt − 1

4qt
FIq (πt∥π) +O

(
ε

qCLSI

+ L2
shqd

)
≲

ε

qCLSI

+ L2
shqd,

which yields

1

qN0h

log Eπ
[
ϕ
qN0h

N0h

]
− 1

2
log Eπ

[
ϕ2
0

]
≲

(
ε

qCLSI

+ L2
shqd

)
N0h ≲

log q

q
ε+ CLSIL

2
shdq log q.

Finally, shifting time indices and applying Equation (30) to the case of R2 (πt∥π), we
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obtain

Rq

(
π(N+N0)h

∥∥π)
≤ RqN0h

(
π(N+N0)h

∥∥π) =
1

qN0h − 1
log Eπ

[
ϕ
qN0h

(N+N0)h

]
≤ 3

2qN0h

log Eπ
[
ϕ
qN0h

(N+N0)h

]
(since qN0h ≥ q ≥ 3)

≤ 3

4
log Eπ

[
ϕ2
Nh

]
+ Õ

(
ε

q
+ CLSIL

2
shdq

)
=

3

4
R2 (πNh∥π) + Õ

(
ε

q
+ CLSIL

2
shdq

)
≤ 3

4
exp

(
− Nh

4CLSI

)
R2 (π0∥π) +O

(
ε+ CLSIL

2
shd
)

+ Õ

(
ε

q
+ CLSIL

2
shdq

)
=

3

4
exp

(
− Nh

4CLSI

)
R2 (π0∥π) + Õ

(
ε+ CLSIL

2
shdq

)
.

B.4 Sketch of Proof of Theorem 4

We first consider a process {Xt ∼ pt}t∈[0,T ] defined as a solution to the SDE

dXt = µt(Xt)dt+ σtdWt,

where (Wt)t∈[0,T ] is a Brownian motion. Its Fokker-Planck equation is

∂tpt = −(∇ · µt)pt − ⟨µt,∇pt⟩+
1

2

〈〈
σtσ

T
t ,∇2pt

〉〉
. (32)

This is a Cauchy problem for a linear PDE. By Feynman-Kac formula (see, e.g., [KS91,

Chapter 5.7] and [BS02, Part I, Chapter 6.1]), denote {Ys}s∈[0,T ] as the solution to the

SDE

dYs = −µT−s(Ys)ds+ σ(T − s)dB′s,

in which (B′s)s∈[0,T ] a Brownian motion on (Ω,F ,P), we have

pT (x) = EP

[
p0(YT ) exp

(
−
∫ T

0

∇ · µT−s(Ys)ds
)∣∣∣∣Y0 = x

]
.

We are more interested in log pT (x) than pT (x). Suppose we have a reference proba-

bility measure Q that dominates P, then by Jensen’s inequality,

log pT (x) ≥ EQ

[
log

dP
dQ

+ log p0(YT )−
∫ T

0

∇ · µT−s(Ys)ds
∣∣∣∣Y0 = x

]
.

To find a suitable Q, we resort to the Girsanov theorem (see, e.g., [KS91, Chapter 3.5]

and [BS02, Part I, Chapter 3.6]). Define a new process (B̂s)s∈[0,T ] by dB̂s = dB′s − asds,
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B̂0 = 0. (as(ω))s∈[0,T ] is a d-dimensional measurable and adapted process satisfying the

Novikov condition, i.e., EP

[
exp

(
1

2

∫ T

0

∥as∥2 ds

)]
<∞. Then (B̂s)s∈[0,T ] is a Brownian

motion under Q, which is defined via

dQ
dP

= exp

(∫ T

0

asdB
′
s −

1

2

∫ T

0

∥as∥2 ds

)
.

Therefore, the lower bound of log pT (x) is

log pT (x) ≥ EQ

[
log p0(YT )− 1

2

∫ T

0

∥as∥2 ds−
∫ T

0

∇ · µT−s(Ys)ds
∣∣∣∣Y0 = x

]
=: E∞(x),

where {Ys}s∈[0,T ] is the solution to the SDE

dYs = −(µT−s(Ys) + σ(T − s)as)ds+ σ(T − s)dB̂s,

where (B̂s)s∈[0,T ] a Brownian motion on (Ω,F ,Q).

By applying Itô’s formula on d log pT−s(Ys), the variational gap is8

log pT (x)− E∞(x) =
1

2

∫ T

0

EQ

[∥∥as − σT
T−s∇ log pT−s(Ys)

∥∥2∣∣∣Y0 = x
]

ds.

For score-based generative learning, by substituting Xt ← x̃t in Equation (11) and

Ys ← ys in Equation (5), we have the desired lower bound and variational gap.

Remark. Interested readers might ask why we do not deal with log pT directly instead of

taking the variational approach. This is because Equation (32) implies

∂t log pt = −∇ · µt − ⟨µt,∇ log pt⟩+

〈〈
1

2
σtσ

T
t ,∇2 log pt + (∇ log pt)(∇ log pt)

T

〉〉
,

which is a nonlinear PDE. Therefore, we cannot apply the Feynman-Kac formula here.

Similarly, when the SDE is discretized, its Fokker-Planck equation is also nonlinear ac-

cording to Lemma 6, so the variational approach fails.

B.5 Sketch of Proof of Theorem 6

We sketch the proof of the first part and refer the readers to [Che+23b, Appendix E,

Lemma 21] for the proof of the second part.

Note that when applying Girsanov theorem, the new measure’s marginal at t = 0 is

the same as the old one’s. So the main idea of proving Theorem 6 is to utilize the sampling

process initialized at qT as a bridge connecting the real sampling process (initialized at γd)

and the backward SDE initialized at qT . We decompose the TV distance (which is upper

8The variational gap given in [HLC21, theorem 4, (18)] has two small mistakes: it does not incorporate
the factor 1/2, and taking conditional expectation on {Y0 = x} is missing.
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bounded by KL divergence using Pinsker inequality) between the sampling distribution

and the data distribution into two parts, and bound them by data-processing inequality

and Girsanov theorem, respectively.

We consider the standard Wiener space
(
Ω,F , (Ft)t∈[0,T ],Q

)
, where Ω = C

(
[0, T ];Rd

)
,

and (Bt : ω 7→ ωt)t∈[0,T ] is a d-dimensional Brownian motion under Q. Denote Qt := Q|Ft ,

a measure on (Ω,Ft). We define a process (Xt)t∈[0,T ] by the SDE

dXt = (Xt + 2∇ log qT−t(Xt)) dt+
√

2dBt, X0 ∼ qT . (33)

Thus, under Q, the joint law of (Xt)t∈[0,T ] is the same as the law of the time reversal of

OU process. More specifically, the Lebesgue density of Xt under Q is qT−t.

We hope to find a probability measure P under which the transition kernel of (Xt)t∈[0,T ]

is the same as the one of the sampling process, i.e., there exists a Brownian motion

(βt)t∈[0,T ] under P such that

dXt =
(
Xt + 2sT−t−(Xt−)

)
dt+

√
2dβt. (34)

Comparing Equations (33) and (34), it suffices to define P in the following way: first,

the process

bt :=
√

2
(
sT−t−(Xt−)−∇ log qT−t(Xt)

)
, t ∈ [0, T ]

is square-integrable in the sense that EQ

[∫ T

0

∥bt∥2 dt

]
<∞ (see Equation (35)). There-

fore, its Itô integral

(
Lt :=

∫ t

0

bsdBs

)
t∈[0,T ]

is a square-integral continuous martingale,

and we denote its related exponential supermartingale(
E(L)t := exp

[∫ t

0

bsdBs −
1

2

∫ t

0

∥bs∥2 ds

])
t∈[0,T ]

.

If the assumptions of Girsanov theorem are satisfied, then P defined by
dP
dQ

∣∣∣∣
Ft

= E(L)t

is a probability measure under which the transition kernel of (Xt)t∈[0,T ] is the same as the

one of the sampling process, which means (Xt)t∈[0,T ] is the sampling process initialized at

qT (note that
dP
dQ

∣∣∣∣
F0

= 1, hence X0 has the same law under both Q and P). We denote

Pt := P|Ft and pqTt as the Lebesgue density of Xt under P. Now we can derive the KL

divergence between Qt := Q|Ft and Pt := P|Ft :

KL (QT∥PT ) = EQ

[
log

dQ
dP

∣∣∣∣
FT

]
=

1

2
EQ

[∫ T

0

∥bt∥2 dt

]
.
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By a careful analysis, we obtain

1

2
EQ

[∫ T

0

∥bt∥2 dt

]
≲
(
ε2 + L2dh+ L2m2

2h
2
)
T, (35)

which does not depend on the validity of Girsanov theorem. We omit its proof here.

Recall that we have assumed that the conditions for using Girsanov theorem are

satisfied, i.e., E(L) is a martingale under Q. However, in general, it is only a continuous

local martingale, so there exists a sequence of stopping times Tn ↗ T such that E(L)·∧Tn =

E (Ln) is a martingale, where Lnt :=

∫ t

0

bs I[0,Tn](s)dBs. We now apply Girsanov theorem

to Ln: there exists a probability measure Pn defined by
dPn

dQ

∣∣∣∣
Ft

= E (Ln)t, under which

(
βnt := Bt −

∫ t

0

bs I[0,Tn](s)ds
)
t∈[0,T ]

is a Brownian motion. Consequently,

dXt =
[(
Xt + 2sT−t−(Xt−)

)
I[0,Tn](t) + (Xt + 2∇ log qT−t(Xt)) I(Tn,T ](t)

]
dt+

√
2dβnt .

Till now, we have been considering the same process (Xt)t∈[0,T ] under different prob-

ability measures Q and Pn. Now we consider coupling different processes together under

the same probability measure to get some properties in sample path. Denote the Wiener

space (Ω,F ,P) and d-dimensional Brownian motion (Wt)t∈[0,T ] under P. Define new pro-

cesses via the following SDEs starting from the same initialization Xn
0 = X̃0 with density

qT under P:

dXn
t =

[(
Xn
t + 2sT−t−(Xn

t−)
)
I[0,Tn](t) + (Xn

t + 2∇ log qT−t(X
n
t )) I(Tn,T ](t)

]
dt+

√
2dWt;

dX̃t =
(
X̃t + 2sT−t−(X̃t−)

)
dt+

√
2dWt,

then

(Xn)♯P = X♯Pn, (X̃)♯P = X♯P. (36)

Here, we only use the notation X♯P as a whole to represent the joint law of the sampling

trajectory, since P may not exist in the general case.

Define a Borel mapping on Ω = C
(
[0, T ];Rd

)
via πε : f· 7→ f·∧(T−ε) for some ε ∈ (0, T ).

Since P
(
Xn
t = X̃t, t ∈ [0, Tn]

)
= 1, it is easy to verify that

P
(
ω : πε(X

n(ω))· ⇒ πε(X̃(ω))· on [0, T ]
)

= 1,

which implies (πε)♯((X
n)♯P) ⇀ (πε)♯((X̃)♯P), using [AGS08, Lemma 5.2.1]. Therefore,
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KL ((πε)♯(X♯Q)∥(πε)♯(X♯P))

= KL
(

(πε)♯(X♯Q)
∥∥∥(πε)♯((X̃)♯P)

)
(By Equation (36))

≤ lim inf
n→∞

KL ((πε)♯(X♯Q)∥(πε)♯((Xn)♯P)) (Lower semicontinuity of KL)

= lim inf
n→∞

KL ((πε)♯(X♯Q)∥(πε)♯(X♯Pn)) (By Equation (36))

≤ lim inf
n→∞

KL (Q∥Pn) (Data-processing inequality)

= lim inf
n→∞

1

2
EQ

[∫ Tn

0

∥bt∥2 dt

]
≲

(
ε2 + L2dh+ L2m2

2h
2
)
T (By Equation (35), and Tn ≤ T ).

We refer the readers to [AGS08, Lemma 9.4.3] for the lower semicontinuity of KL di-

vergence and [AGS08, Lemma 9.4.5] or [Che22, Theorem 1.5.3] for the data-processing

inequality. Since πε pointwisely converges to the identity as ε→ 0, by [AGS08, Corollary

9.4.6],

lim
ε→0

KL ((πε)♯(X♯Q)∥(πε)♯(X♯P))

= KL (X♯Q∥X♯P)

≥ KL ((XT )♯Q∥(XT )♯P) (Data-processing inequality)

= KL (q0∥pqTT ) .

We have almost achieved the desired result. We have bounded KL (q0∥pqTT ). Note that

pqTT and pT are the distribution of XT by running Equation (34) starting from X0 ∼ qT

and X0 ∼ γd respectively, so the data-processing inequality implies that KL (pqTT ∥pT ) ≤
KL (qT∥γd), which can be bounded by Lemma 1. Unfortunately, neither the KL divergence

nor its square satisfies the triangle inequality. As a result, we have to resort to Pinsker

inequality and using the triangle inequality of TV distance:

TV (q0, pT ) ≤ TV (q0, p
qT
T ) + TV (pqTT , pT )

≲
√

KL (q0∥pqTT ) +
√

KL (pqTT ∥pT )

≲
(
ε+ L

√
dh+ Lm2h

)√
T +

√
KL (q0∥γd)e−T .

Remark. We would like to kindly point out a minor error in the approximation argument

in [Che+23b, Appendix B.2], starting from the first line on page 17: P n is not the

law of the solution to the SDE (17), and constructing a “coupling” of P n and P qT
T is

actually constructing a coupling of the laws X♯P
n and X♯P

qT
T . The error comes from

misunderstanding the distribution (or law) of a random variable or stochastic process:

the distribution of a random variable X on (Ω,F ,P) is X♯P instead of P. For this reason,
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we rewrite the approximation argument in detail in this paper.

B.6 Sketch of Proof of Theorem 7

Similar to Theorem 1, we define three processes, namely: {x̃∗t} is the time reversal of

the forward process, {xt} is the sampling process, and {zt} is the sampling process but

with an L∞-accurate score.

dx̃∗t =
1

2
βT−t (x̃∗t + 2∇ log qT−t(x̃

∗
t )) dt+

√
βT−tdWt, x̃∗t ∼ q←t = qT−t;

dxt =
1

2
βT−t

(
xt + 2sT−t−(xt−)

)
dt+

√
βT−tdWt, xt ∼ pt;

dzt =
1

2
βT−t

(
zt + 2bT−t−(zt−)

)
dt+

√
βT−tdWt, zt ∼ νt, (ν0 ← p0),

where

bt = st IB∁
t

+∇ log qt IBt , Bt := {∥st −∇ log qt∥ > ε∞,t}

for some ε∞,· that will be determined later. Using Lemma 2,

TV (ptn , νtn) ≤
n−1∑
k=0

√
χ2
(
νtk
∥∥q←tk )+ 1

√
q←tk (BT−tk).

To bound χ2
(
νtk
∥∥q←tk ), it suffices to upper bound

d

dt
χ2 (νt∥q←t ), which can be calcu-

lated via the Fokker-Planck equation. The main challenge of bounding
d

dt
χ2 (νt∥q←t ) lies

in upper bounding KL (ψtpt∥q←t ), where ϕt =
pt
q←t

and ψt =
ϕt

Eq←t [ϕ2
t ]

.

Previously, in [LLT22], the authors assumed that the target distribution pdata = q0

satisfies CLSI-LSI, so all qt’s satisfy LSI with a constant depending on t, βt, and CLSI (see

[LLT22, Lemma E.7]). Given this assumption, bounding KL (ψtpt∥q←t ) is a simple task

as in the proof of Theorem 1.

Nevertheless, it takes a great effort to remove this assumption. The proof in [LLT23]

circumvents this assumption via the following argument:

1. Slightly modify the target distribution pdata = q0 into a new distribution q0 =
m∑
i=1

wiqi,0, where wi’s are weights summing up to 1 and each probability distribution

qi,0 satisfies C0-LSI, while χ2 (q0∥q0) is sufficiently small ([LLT23, Lemma 5.2]).

2. From now on, take q0 as the target distribution, and denote q←t = qT−t as the law

of xT−t when running the forward SDE (Equation (5)) with initialization x0 ∼ q0.

Upper bound KL (ψtpt∥q←t ) using the properties of LSI ([LLT23, Lemma 5.1]).

3. Prove that by replacing the target distribution q0 with q0, the change in the score
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is insignificant in the sense of L2. More precisely, upper bound

Eqt [∥∇ log qt −∇ log qt∥] and qt (∥st −∇ log qt∥ ≥ ε∞)

with terms involving χ2 (q0∥q0).

4. Finally, derive an upper bound of χ2
(
νtn
∥∥q←tn). By relaxing chi-square divergence

to TV distance and properly choosing the parameters, we can arrive at the desired

result.

B.7 Sketch of Proof of Theorem 9

Note from the proof that if we want to use Girsanov theorem, then we must consider

the sampling process initialized at qT , and convert to the real sampling process by Pinsker

inequality. To avoid this issue, we can directly upper bound KL (q0 = q←T ∥pT ) using the

data-processing inequality and the chain rule of KL divergence (Lemma 5),

KL (q←T ∥pT ) ≤ KL
(
q←T,0
∥∥pT,0) = KL (q←0 ∥pT ) + Eq←0 (a)

[
KL
(
q←T |0(·|a)

∥∥pT |0(·|a)
)]

(37)

The first term is KL (qT∥γd) and can be bounded by Lemma 1. Using the same argument

again,

Eq←0 (a)

[
KL
(
q←T |0(·|a)

∥∥pT |0(·|a)
)]

≤ Eq←0 (a)

[
KL
(
q←T,t′1|0(·, ◦|a)

∥∥∥pT,t′1|0(·, ◦|a)
)]

= Eq←0 (a)

[
KL
(
q←t′1|0(◦|a)

∥∥∥pt′1|0(◦|a)
)

+ Eq←
t′1|0

(b|a)

[
KL
(
q←T |t′1|0(·|b|a)

∥∥∥pT |t′1|0(·|b|a)
)]]

= Eq←0 (a)

[
KL
(
q←t′1|0(◦|a)

∥∥∥pt′1|0(◦|a)
)]

+ Eq←
t′1(b)

[
KL
(
q←T |t′1(·|b)

∥∥∥pT |t′1(·|b))] .
The last step is due to Markov property. Iterating, we have

Eq←0 (a)

[
KL
(
q←T |0(·|a)

∥∥pT |0(·|a)
)]
≤

N−1∑
k=0

Eq←
t′
k
(a)

[
KL
(
q←t′k+1|t

′
k
(·|a)

∥∥∥pt′k+1|t
′
k
(·|a)

)]
. (38)

Suffice it to bound
d

dt
KL
(
q←t|t′k(·|a)

∥∥∥pt|t′k(·|a)
)

for t ∈ [t′k, t
′
k+1], which can be easily calcu-

lated using the Fokker-Planck equation (Lemma 6), and then taking integral. The only

problem is the boundary condition: we expect that

lim
t↘t′k

KL
(
q←t|t′k(·|a)

∥∥∥pt|t′k(·|a)
)

= 0, for q←t′k -a.s. a, (39)

since as t ↘ t′k, both distributions converges to δa. To prove Equation (39) rigorously,

[CLL22] considered bounding the path measure using Girsanov theorem. More specifically,

consider the Wiener space (Ω,F , (Ft)t∈[t′k,t′k+ϵ],Q) for some 0 < ϵ < t′k+1 − t′k = tN−k −
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tN−k−1 and (Bt)t∈[t′k,t′k+ϵ] is a Brownian motion. (Xt)t∈[t′k,t′k+ϵ] satisfies the SDE

dXt =

(
1

2
Xt +∇ log qT−t(Xt)

)
dt+ dBt; Xt′k

= a, Q-a.s.

Define the process (βt)t∈[t′k,t′k+ϵ] by

dβt = dBt −
(
sT−t′k(a)−∇ log qT−t(Xt)

)︸ ︷︷ ︸
:=Yt

dt; βt′k = 0, Q-a.s.

Then, if the Novikov condition holds, i.e.,

EQ

[
exp

(
1

2

∫ t′k+ϵ

t′k

∥Yt∥2 dt

)]
<∞, (40)

we can define a probability measure P via

dP
dQ

∣∣∣∣
Ft

= exp

(∫ t

t′k

YsdBs −
1

2

∫ t

t′k

∥Ys∥2 ds

)
,

under which (βt)t∈[t′k,t′k+ϵ] is a Brownian motion and

dXt =

(
1

2
Xt + sT−t′k(a)

)
dt+ dβt, t ∈ [t′k, t

′
k + ϵ]; Xt′k

= a, P-a.s.

As a result, we can easily upper bound the KL divergence:

KL
(
q←t|t′k(·|a)

∥∥∥pt|t′k(·|a)
)

= KL ((Xt)♯Q∥(Xt)♯P)

≤ KL (Qt∥Pt) (data processing inequality)

=
1

2
EQ

[∫ t′k+ϵ

t′k

∥Ys∥2 Is≤tds

]
→ 0 (t↘ 0) (monotone convergence theorem).

It remains to verify the Novikov condition (Equation (40)). By ∥u+ v∥2 ≤ 2
(
∥u∥2 + ∥v∥2

)
,

it suffices to show that for a.s. a ∼ q←t′k = qtN−k
,

EQ

[
exp

(∫ t′k+ϵ

t′k

∥∇ log qT−t(Xt)∥2 dt

)]

= E

[
exp

(∫ t′k+ϵ

t′k

∥∇ log qT−t(yT−t)∥2 dt

)∣∣∣∣∣yT−t′k = a

]

= E

[
exp

(∫ tN−k

tN−k−ϵ
∥∇ log qt(yt)∥2 dt

)∣∣∣∣∣ytN−k
= a

]
?
<∞.
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By taking integral, this motivates us to prove

E

[
exp

(∫ tN−k

tN−k−ϵ
∥∇ log qt(yt)∥2 dt

)]

≤
∫ tN−k

tN−k−ϵ
E
[
exp

(
∥∇ log qt(yt)∥2

)]
dt

=

∫ tN−k

tN−k−ϵ

(
∞∑
n=0

1

n!
E
[
∥∇ log qt(yt)∥2n

])
dt

?
<∞.

Since y0 ∼ pdata and yt|y0 ∼ N
(
αty0, σ

2
t I
)
, if we denote the conditional distribution of y0

given yt = y as q0|t(·|y)9, then by Bayesian rule,

∇ log qt(yt) = Eq0|t(y0|yt)
[
αty0 − yt

σ2
t

]
.

This result is similar to the Tweedie lemma [Efr11]. By writing the score in the form of

conditional expectation, we can use Jensen inequality:

E
[
∥∇ log qt(yt)∥2n

]
= Eqt(yt)

[∥∥∥∥Eq0|t(y0|yt) [αty0 − ytσ2
t

]∥∥∥∥2n
]

≤ Eqt(yt)

[
Eq0|t(y0|yt)

[∥∥∥∥αty0 − ytσ2
t

∥∥∥∥2n
]]

= Eξ∼N (0,Id)

[
∥ξ/σt∥2n

]
=⇒

∫ tN−k

tN−k−ϵ

(
∞∑
n=0

1

n!
E
[
∥∇ log qt(yt)∥2n

])
dt ≤ ϵ

∞∑
n=0

1

n!
Eξ∼N (0,Id)

[∥∥ξ/σtN−k−ϵ
∥∥2n]

= Eξ∼N (0,Id)

[
e∥ξ/σtN−k−ϵ∥2

]
<∞.

Thus, Equation (39) is established, and one can readily derive an upper bound of KL (q←T ∥pT )

via the decomposition Equations (37) and (38). The technical difficulty that arises after-

wards mainly lies in bounding the score difference∫ tk

tk−1

E
[
∥∇ log qtk(ytk)−∇ log qt(yt)∥2

]
dt,

which contains discretization in both time and space. [CLL22] overcame this issue by

representing the score as conditional expectation and absorbing the time-discretization

error into the space-discretization error. We refer the readers to [CLL22, Lemma 11] for

further details.

9Interpreted as q0|t(dy0|yt) ∝y0
exp

(
−∥αty0 − yt∥2

2σ2
t

)
pdata(dy0). We do not require pdata to have a

Lebesgue density.
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C Supplementary Lemmas

Lemma 1 (Exponential Convergence of the Marginal Distribution of VPSDE). The

marginal density of the VPSDE (Equation (7)) satisfies

KL (qs∥γd) ≤ exp

(
−
∫ s

0

βudu

)
KL (q0∥γd) ; W2(qs, γd) ≤ exp

(
−1

2

∫ s

0

βudu

)
W2(q0, γd),

provided KL (q0∥γd) <∞ and q0 ∈ P2(Rd).

Proof. We first consider the OU process

dyt = −ytdt+
√

2dWt, yt ∼ qt (q0 ← q0).

The OU process is the Langevin dynamics with stationary distribution γd, and {qt}t≥0 is

the Wasserstein gradient flow of KL (·∥γd) (see, e.g., [Che22, Chapter 1]). Since γd is 1-

strongly-log-concave, it satisfies 1-LSI, which implies KL (qt∥γd) ≤ e−2tKL (q0∥γd). Also,

due to the contraction of Langevin dynamics, W2(qt, γd) ≤ e−tW2(q0, γd). By comparing

the transition distribution of these two processes {ys} and {yt}, we can see that qs = qt

where t =
1

2

∫ s

0

βudu, which finishes the proof.

Remark. [CLL22, Lemma 9] generalized the convergence result in KL divergence to all

q0 ∈ P2(Rd).

Lemma 2 (L∞ → L2 Bridging Lemma ([LLT22], Theorem 4.1)). Let (Ω,F , {Fn}n≥0 ,P)

be a filtered probability space. Suppose
{
X̃n ∼ pn

}
n≥0

, {Xn ∼ πn}n≥0, and {Zn ∼ νn}n≥0
are {Fn}n≥0-adapted stochastic processes, and Bn ⊂ Ω, n ≥ 0 are sets such that for every

n ≥ 1, if Zk ̸∈ Bk for all 0 ≤ k ≤ n − 1, then Xn = Zn. Denote χ2 (νn∥pn) = D2
n and

P
(
X̃n ∈ Bn

)
= δn, then

TV (πn, νn) ≤
n−1∑
k=0

√
(D2

k + 1)δk, TV (pn, πn) ≤ Dn +
n−1∑
k=0

√
(D2

k + 1)δk.

Proof. Since TV (µ, ν) = inf
γ∈Π(µ,ν)

E(x,y)∼γ [ Ix ̸=y],

TV (πn, νn) ≤ P (Xn ̸= Zn) ≤ P

(
n−1⋃
k=0

{
Zk ∈ Bk

})
≤

n−1∑
k=0

P
(
Zk ∈ Bk

)
=

n−1∑
k=0

Epk

[
qk
pk

IBk

]
.

By Cauchy-Schwartz inequality, it is bounded from above by

n−1∑
k=0

(
Epk

[(
qk
pk

)2
])1/2

(Epk [ IBk
])1/2 =

n−1∑
k=0

√
(D2

k + 1)δk.

Using triangle inequality of TV distance and χ2 (p∥q) ≥ log
(
1 + χ2 (p∥q)

)
≥ KL (p∥q) ≥
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2TV (p, q)2 (the second inequality is a simple result of Jensen inequality and the third is

Pinsker inequality),

TV (pn, πn) ≤ TV (νn, pn) + TV (πn, νn) ≤ χ2 (νn∥pn) + TV (πn, νn) .

Lemma 3 (Evolution of Wasserstein-2 distance along probability paths). Consider two

probability trajectories
{
ρ
(i)
t

}
t≥0
⊂ P2(Rd), with continuity equations ∂tρ

(i)
t +∇·

(
ρ
(i)
t v

i
t

)
=

0, i = 1, 2. Then

d

dt
W 2

2

(
ρ
(i)
t , ρ

)
=

〈
−2
(
Tρ(i)→ν − id

)
, v

(i)
t

〉
ρ(i)

,

d

dt
W 2

2

(
ρ
(1)
t , ρ

(2)
t

)
= 2E

(x,y)∼Π∗
(
ρ
(1)
t ,ρ

(2)
t

) [〈x− y, v(1)t (x)− v(2)t (y)
〉]
,

where ρ ∈ P2(Rd).

Proof. The proof is via Wasserstein gradient. See [Che22, Section 1.4] for a detailed

review.

Lemma 4 (Donsker-Varadhan Variational Principle for KL Divergence).

KL (µ∥ν) = sup
g∈M
{Eµ [g]− log Eν [eg]} ,

whereM means the set of measurable functions.

Lemma 5 (Chain Rule of KL Divergence). Given two probability measures µ, ν ∈ P(X1×
X2) with µ ≪ ν, let µ1 (ν1) be the X1-marginal of µ (ν) and µ2|1(·|·) (ν2|1(·|·)) be the

conditional distribution for µ (ν) on X2 conditional on X1. Then

KL (µ∥ν) = KL (µ1∥ν1) + Ex1∼µ1
[
KL
(
µ2|1(·|x1)

∥∥ν2|1(·|x1))] .
Proof. See [Che22, Lemma 1.5.5] or [CT05, Theorem 2.5.3].

Lemma 6 (A Generalization of Fokker-Planck Equation). Consider the SDE

dzt = F (zt, zt− , t, t−)dt+G(t)dWt, zt ∼ µt,

where t 7→ t− ∈ [0, t] is a piece-wise constant non-decreasing function (e.g., t− =

⌊
t

h

⌋
h

for some h > 0), F ∈ Rd, and G ∈ Rd×d. Then µt satisfies the following continuity

equation:

∂tµt +∇ ·
[
µt

(
E
[
F (zt, zt− , t, t−)|zt = ·

]
− 1

2
G(t)G(t)T∇ log µt

)]
= 0.

56



Theoretical Analysis of the Approximation Properties of Score-Based Generative Models

Remark. Note that the limiting case of Lemma 6 as h converges to 0, i.e., t− ≡ t, is the

usual Fokker-Planck equation for SDEs. The theorem is first proved in [VW19, Equa-

tion 31] for the Langevin diffusion with Euler-Maruyama discretization (see also [Che22,

Chapter 4.2] for a proof). [LLT22, Lemma A.1] then proved the theorem for general

SDEs.

Lemma 7. For p, q ∈ P2,ac(Rd),

E(x,y)∼Π∗(p,q) [⟨x− y,∇ log p(x)−∇ log q(y)⟩] ≥ 0.

Proof. Denote ∇ϕ the OT map from p to q, where ϕ is a strongly convex function. Then

∇ϕ∗ = (∇ϕ)−1 is the OT map from q to p. Therefore,

E(x,y)∼Π∗(p,q) [⟨x− y,∇ log p(x)−∇ log q(y)⟩]

=

∫
p(x) ⟨x−∇ϕ(x),∇ log p(x)⟩ dx−

∫
q(y) ⟨∇ϕ∗(y)− y,∇ log q(y)⟩ dy

= −
∫
p(x)(d−∆ϕ(x))dx+

∫
q(y)(∆ϕ∗(y)− d)dy

=

∫
p(x) (∆ϕ(x) + ∆ϕ∗(∇ϕ(x))− 2d) dx

=

∫
p(x)

(
tr
(
∇2ϕ(x)

)
+ tr

(
∇2ϕ(x)−1

)
− 2d

)
dx ≥ 0.

Note that the second equality is using integral by parts and the last equality is derived

from

∇ϕ∗(∇ϕ(x)) = x =⇒ ∇2ϕ∗(∇ϕ(x))∇2ϕ(x) = I.

The final step can be proved by taking eigenvalue decomposition of ∇2ϕ(x) = PΛPT,

where P is orthogonal and Λ = diag(λ1, ..., λd). In this case, ∇2ϕ(x)−1 = PΛ−1PT. Since

ϕ is strongly convex, ∇2ϕ(x) is positive semidefinite and λi > 0. Therefore,

tr
(
∇2ϕ(x)

)
+ tr

(
∇2ϕ(x)−1

)
=

d∑
i=1

(
λi +

1

λi

)
≥ 2d.

Lemma 8 ([Che+22], Lemma 16). If P(Rd) ∋ π ∝ e−V and ∇V is β-Lipschitz, then for

all µ≪ π,

Eµ
[
∥∇V ∥2

]
≤ FI (µ∥π) + 2βd.

Lemma 9 (Gaussian Concentration Bound). If ξ ∼ N (0, Id), then

E
[
exp

(
1

8
(∥ξ∥ − E [∥ξ∥])2

)]
< 2.
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Proof. By [Wai19, Theorem 2.26], since ∥·∥ is 1-Lipschitz, we have

P (∥ξ∥ − E [∥ξ∥] ≥ t) ≤ e−t
2/2, t > 0.

Therefore,

E
[
exp

(
1

8
(∥ξ∥ − E [∥ξ∥])2

)]
=

∫ ∞
0

P
(

exp

(
1

8
(∥ξ∥ − E [∥ξ∥])2

)
≥ t

)
dt

= 1 + 2

∫ ∞
1

P
(
∥ξ∥ − E [∥ξ∥] ≥

√
8 log t

)
dt ≤ 1 + 2

∫ ∞
1

1

t4
dt =

5

3
< 2.
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